分析 根据一次函数解析式求得OD=OE=4,则△EOD是等腰直角三角形,得出∠ODE=∠OED=45°,由∠OGE=∠ODF+∠DOG=45°+∠DOG,∠DOF=∠EOF++∠DOG=45°+∠DOG得出∠DOF=∠OGE,从而证得△DOF∽△EGO,得出$\frac{DF}{OE}$=$\frac{OD}{EG}$,DF•EG=OE•OD=16,过点F作FM⊥x轴于点M,过点G作GN⊥y轴于点N.则易知DF=$\sqrt{2}$b,GE=$\sqrt{2}$a,得出DF•GE=2ab=16,求得ab=8.
解答 解:∵直线y=-x+4与x轴,y轴分别交于点D,点E,
∴OD=OE=4,
∴∠ODE=∠OED=45°;
∴∠OGE=∠ODF+∠DOG=45°+∠DOG,
∵∠EOF=45°,
∴∠DOF=∠EOF++∠DOG=45°+∠DOG,
∴∠DOF=∠OGE,
∴△DOF∽△EGO,
∴$\frac{DF}{OE}$=$\frac{OD}{EG}$,
∴DF•EG=OE•OD=16,
过点F作FM⊥x轴于点M,过点G作GN⊥y轴于点N.
∴△DMF和△ENG是等腰直角三角形,
∵NG=AC=a,FM=BC=b,
∴DF=$\sqrt{2}$b,GE=$\sqrt{2}$a,
∴DF•GE=2ab,
∴2ab=16,
∴ab=8,
∴矩形OACB的面积=ab=8.
故答案为8.
点评 本题是一次函数的综合题,考查了一次函数图象上点的坐标特征,三角形相似的判定和性质找出辅助线构建等腰直角三角形,求得DF=$\sqrt{2}$b,GE=$\sqrt{2}$a是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 100cm | B. | 120cm | C. | 130cm | D. | 150cm |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com