精英家教网 > 初中数学 > 题目详情

【题目】如图,在直角坐标系中,直线y=6-x与双曲线y=(x>0)的图象相交于点A,B,设点A的坐标为(m,n),那么以m为长n为宽的矩形的面积和周长分别为(  )

A. 4,6 B. 4,12 C. 8,6 D. 8,12

【答案】B

【解析】

此题首先要观察题目,求的是矩形的面积和周长,首先表示出矩形的面积:mn,正好符合反比例函数的特点,因此根据点A在反比例函数的图象上即可得解;然后求矩形的周长:2(x+y),此时发现周长的表达式正好符合直线AB的解析式,根据A点在直线AB的函数图象上即可得解.

∵点A(m,n)在y=6-x与双曲线y= (x>0)的图象上,

n=6-m,n=

m+n=6,mn=4;

∴矩形的面积为:mn=4,矩形的周长为:2(m+n)=12;

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为米,中午时不能挡光. 如图,某旧楼的一楼窗台高1米,要在此楼正南方米处再建一幢新楼. 已知该地区冬天中午时阳光从正南方照射,并且光线与水平线的夹角最小为°,在不违反规定的情况下,请问新建楼房最高_____________. (结果精确到1.,)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等边三角形,D,E分别是AC,BC边上的点,且AD=CE,连接BD,AE相交于点F.

(1)∠BFE的度数是多少;

(2)如果,那么等于多少;

(3)如果时,请用含n的式子表示AF,BF的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】晚上,小亮走在大街上发现:当他站在大街两边的两盏路灯之间,并且自己被两边路灯照在地上的两个影子成一直线时,自己右边的影子长为3m,左边的影子长为1.5m,又知自己身高1.80m,两盏路灯的高相同,两盏路灯之间的距离为12m,则路灯的高为(  )

A. 6.6m B. 6.7m C. 6.8m D. 6.9m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,港口A在观测站O的正东方向,OA=4.某船从港口A出发,沿北偏东15°方向航行一段距离后到达B,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(AB的长)____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某空调厂的装配车间计划组装9000台空调.

(1)从组装空调开始,每天组装的台数m(单位:/)与生产时间t(单位:)之间有怎样的函数关系?

(2)原计划用2个月时间(每月以30天计算)完成,由于气温提前升高,厂家决定这批空调提前10天上市,那么原装配车间每天至少要组装多少台空调?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABO中,∠AOB90°,点A在第一象限,点B在第二象限,且AOBO12,若经过点A的反比例函数解析式为y,则经过点Bxy)的反比例函数解析式为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为一圆洞门.工匠在建造过程中需要一根横梁AB和两根对称的立柱CEDF来支撑,点ABCDO上,CEABEDFABF,且AB2EF120°.

(1)求出圆洞门O的半径;

(2)求立柱CE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=﹣x2+bx+cbc均为常数的图象经过两点A(2,0),B(0,﹣6).

(1)求这个二次函数的解析式

(2)若点Cm,0)(m>2)在这个二次函数的图象上连接ABBC求△ABC的面积

查看答案和解析>>

同步练习册答案