精英家教网 > 初中数学 > 题目详情
5.这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是③(填序号).

①13=3+10;②25=9+16;③36=15+21;④49=18+31.

分析 任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为$\frac{1}{2}$n(n+1)和$\frac{1}{2}$(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.

解答 解:显然选项①中13不是“正方形数”;选项②④中等式右侧并不是两个相邻“三角形数”之和.
故答案为:③.

点评 此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

15.如图,⊙O与射线AM相切于点B,圆心O在射线AN上,⊙O半径为6cm,OA=10cm.点P从点A出发,以2cm/秒的速度沿AN方向运动,过P点作直线l垂直AB,当l与⊙O相切时,所用时间是$\frac{5}{4}$或$\frac{35}{4}$秒.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列命题中,正确的是(  )
A.正方形的对角线不相等B.菱形的对角线不相等
C.矩形的对角线不能互相垂直D.平行四边形的对角线可以互相垂直

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=$\frac{k}{x}$(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,$\frac{2}{3}$),过点E的直线l交x轴于点F,交y轴于点G(0,-2),则点F的坐标是($\frac{9}{4}$,0).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.已知直线y=ax+b与双曲线y=$\frac{6}{x}$相交于A(x1,y1),B(x2,y2)两点,则x1y1+x2y2的值为12.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=$\frac{m}{x}$的图象相交于点A(-2,3),B(3,n)两点.
(1)求一次函数与反比例函数的解析式;
(2)过点B作BC⊥x轴,垂足为C,求∠ABC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.甲、乙两车分别从A、B两地同时出发相向而行,并以各自的速度匀速行驶,甲车与乙车相遇后休息半小时,再按原速度继续前进到达B地;乙车从B地直接到达A地;两车到达各自目的地后即停止.如图是甲、乙两车和B地的距离y(千米)与甲车出发时间x(小时)的函数图象.
(1)甲车的速度是120,m=1.5;
(2)请分别写出两车在相遇前到B地的距离y(千米)与甲车出发时间x(小时)的函数关系式;
(3)当乙车行驶多少时间时,甲乙两车的距离是280千米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在平面直角坐标系中,抛物线y=a(x-1)2+4与x轴交于点A、B两点,与y轴交于点C,且点B的坐标为(3,0),点P在这条抛物线上,且不与B、C两点重合.过点P作y轴的垂线与射线BC交于点Q,以PQ为边作Rt△PQF,使∠PQF=90°,点F在点Q的下方,且QF=1.设线段PQ的长度为d,点P的横坐标为m.
(1)求这条抛物线所对应的函数表达式.
(2)求d与m之间的函数关系式.
(3)当Rt△PQF的边PF被y轴平分时,求d的值.
(4)以OB为边作等腰直角三角形OBD,当0<m<3时,直接写出点F落在△OBD的边上时m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:
(1)本次抽样调查的书籍有多少本?请补全条形统计图;
(2)求出图1中表示文学类书籍的扇形圆心角度数;
(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?

查看答案和解析>>

同步练习册答案