精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线y=x2﹣2mx+m2+m﹣1(m是常数)的顶点为P,直线l:y=x﹣1

(1)求证:点P在直线l上。
(2)当m=﹣3时,抛物线与x轴交于A,B两点,与y轴交于点C,与直线l的另一个交点为Q,M是x轴下方抛物线上的一点,∠ACM=∠PAQ(如图),求点M的坐标
(3)若以抛物线和直线l的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m的值.

【答案】
(1)

证明:∵y=x2﹣2mx+m2+m﹣1=(x﹣m)2+m﹣1,

∴点P的坐标为(m,m﹣1),

∵当x=m时,y=x﹣1=m﹣1,

∴点P在直线l上


(2)

解:当m=﹣3时,抛物线解析式为y=x2+6x+5,

当y=0时,x2+6x+5=0,解得x1=﹣1,x2=﹣5,则A(﹣5,0),

当x=0时,y=x2+6x+5=5,则C(0,5),

可得解方程组,解得

则P(﹣3,﹣4),Q(﹣2,﹣3),

作ME⊥y轴于E,PF⊥x轴于F,QG⊥x轴于G,如图,

∵OA=OC=5,

∴△OAC为等腰直角三角形,

∴∠ACO=45°,

∴∠MCE=45°﹣∠ACM,

∵QG=3,OG=2,

∴AG=OA﹣OG=3=QG,

∴△AQG为等腰直角三角形,

∴∠QAG=45°,

∵∠APF=90°﹣∠PAF=90°﹣(∠PAQ+45°)=45°﹣∠PAQ,

∵∠ACM=∠PAQ,

∴∠APF=∠MCE,

∴Rt△CME∽Rt△PAF,

=

设M(x,x2+6x+5),

∴ME=﹣x,CE=5﹣(x2+6x+5)=﹣x2﹣6x,

=

整理得x2+4x=0,解得x1=0(舍去),x2=﹣4,

∴点M的坐标为(﹣4,﹣3)


(3)

解:解方程组,则P(m,m﹣1),Q(m+1,m),

∴PQ2=(m+1﹣m)2+(m﹣m+1)2=2,OQ2=(m+1)2+m2=2m2+2m+1,OP2=m2+(m﹣1)2=2m2﹣2m+1,

当PQ=OQ时,2m2+2m+1=2,解得m1=,m2=

当PQ=OP时,2m2﹣2m+1=2,解得m1=,m2=

当OP=OQ时,2m2+2m+1=2m2﹣2m+1,解得m=0,

综上所述,m的值为0,


【解析】(1)利用配方法得到y=(x﹣m)2+m﹣1,点P(m,m﹣1),然后根据一次函数图象上点的坐标特征判断点P在直线l上;
(2)当m=﹣3时,抛物线解析式为y=x2+6x+5,根据抛物线与x轴的交点问题求出A(﹣5,0),易得C(0,5),通过解方程组得P(﹣3,﹣4),Q(﹣2,﹣3),作ME⊥y轴于E,PF⊥x轴于F,QG⊥x轴于G,如图,证明Rt△CME∽Rt△PAF,利用相似得=,设M(x,x2+6x+5),则=,解得x1=0(舍去),x2=﹣4,于是得到点M的坐标为(﹣4,﹣3);
(3)通过解方程组得P(m,m﹣1),Q(m+1,m),利用两点间的距离公式得到PQ2=2,OQ2=2m2+2m+1,OP2=2m2﹣2m+1,然后分类讨论:当PQ=OQ时,2m2+2m+1=2;当PQ=OP时,2m2﹣2m+1=2;当OP=OQ时,2m2+2m+1=2m2﹣2m+1,再分别解关于m的方程求出m即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某班男生分成甲、乙两组进行引体向上的专项训练,已知甲组有6名男生,并对两组男生训练前,后引体向上的个数进行统计分析,得到乙组男生训练前,后引体向上的平均个数分别是6个和10个,及下面不完整的统计表和图的统计图.
甲组男生训练前、后引体向上个数统计表(单位:个)

甲组

男生A

男生B

男生C

男生D

男生E

男生F

平均个数

众数

中位数

训练前

4

6

4

3

5

2

4

b

4

训练后

8

9

6

6

7

6

a

6

c


(1)根据以上信息,解答下列问题: a= , b= , c=
(2)甲组训练后引体向上的平均个数比训练前增长了%;
(3)你认为哪组训练效果好?并提供一个支持你观点的理由;
(4)小华说他发现了一个错误:“乙组训练后引体向上个数不变的人数占到该组人数的50%,所以乙组的平均个数不可能提高4个之多.:你同意他的观点吗?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市为提高学生参与体育活动的积极性,2011年9月围绕“你最喜欢的体育运动项目(只写一项)”这一问题,对初一新生进行随机抽样调查,下图是根据调查结果绘制成的统计图(不完整).
请你根据图中提供的信息解答下列问题:
(1)本次抽样调查的样本容量是多少?
(2)根据条形统计图中的数据,求扇形统计图中“最喜欢足球运动”的学生数所对应扇形的圆心角度数.
(3)请将条形统计图补充完整.
(4)若该市2011年约有初一新生21000人,请你估计全市本届学生中“最喜欢足球运动”的学生约有多少人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为(  )

A.2.5
B.2.8
C.3
D.3.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=mx+n与双曲线y=相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C

(1)求m,n的值
(2)若点D与点C关于x轴对称,求ABD的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.
(1)求取出纸币的总额是30元的概率
(2)找出总额超过51元的结果数,然后根据概率公式计算

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形OABC的顶点A的坐标为(2,0),∠COA=60°,将菱形OABC绕坐标原点O逆时针旋转120°得到菱形ODEF.

(1)直接写出点F的坐标:
(2)求线段OB的长及图中阴影部分的面积:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:

(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;
(2)在图②中,以格点为顶点,AB为一边画一个正方形;
(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某教研机构为了了解初中生课外阅读名著的现状,随机抽取了某校50名初中生进行调查,依据相关数据绘制成了以下不完整的统计图,请根据图中信息解答下列问题:

类别

重视

一般

不重视

人数

a

15

b


(1)求表格中a,b的值;
(2)请补全统计图;

(3)若某校共有初中生2000名,请估计该校“重视课外阅读名著”的初中生人数.

查看答案和解析>>

同步练习册答案