精英家教网 > 初中数学 > 题目详情

【题目】家庭过期药品属于“国家危险废物“处理不当将污染环境,危害健康。某市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查
(1)下列选取样本的方法最合理的一种是(只需填上正确答案的序号)
①在市中心某个居民区以家庭为单位随机抽取;
②在全市医务工作者中以家庭为单位随机抽取③在全市常住人口中以家庭为单位随机抽取.
(2)本次抽样调查发现,接受调查的家庭都有过期药品,现将有关数据呈现如下图:


①求m、n的值.
②补全条形统计图
③根据调查数据,你认为该市市民家庭处理过期药品最常见的方式是什么?
④家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点。

【答案】
(1)③
(2)

解:①依题可得:510÷51%=1000(户).

∴ 200÷1000×100%=20%.

∴m=20.

∴60÷1000×100%=6%。

∴n=6.

②C的户数为:1000×10%=100(户),补全的条形统计图如下:

③根据调查数据,利用样本估计总体可知,该市市民家庭处理过期药品最常见方式是直接丢弃.

④∵样本中直接送回收点为10%,根据样本估计总体,送回收点的家庭约为:

180×10%=18(万户).


【解析】(1)解:简单随机抽样即按随机性原则,从总体单位中抽取部分单位作为样本进行调查,以其结果推断总体有关指标的一种抽样方法。 随机原则是在抽取被调查单位时,每个单位都有同等被抽到的机会,被抽取的单位完全是偶然性的.由此可以得出答案为③.
【考点精析】认真审题,首先需要了解扇形统计图(能清楚地表示出各部分在总体中所占的百分比.但是不能清楚地表示出每个项目的具体数目以及事物的变化情况),还要掌握条形统计图(能清楚地表示出每个项目的具体数目,但是不能清楚地表示出各个部分在总体中所占的百分比以及事物的变化情况)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图像与正比例函数的图像相交于点A(2,),与轴相交于点B

(1)求的值;

(2)在轴上存在点C,使得AOC的面积等于AOB的面积,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:若线段上的一个点把这条线段分成12的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且ACCB12,则点C是线段AB的一个三等分点,显然,一条线段的三等分点有两个.

1)已知:如图2DE15cm,点PDE的三等分点,求DP的长.

2)已知,线段AB15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.

若点PQ同时出发,且当点P与点Q重合时,求t的值.

若点PQ同时出发,且当点P是线段AQ的三等分点时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).
某校九年级50名学生跳高测试成绩的频数表

组别(m)

频数

1.09~1.19

8

1.19~1.29

12

1.29~1.39

A

1.39~1.49

10


(1)求A的值,并把频数直方图补充完整;
(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知方程组的解x为非正数,y为负数.

(1)求a的取值范围;

(2)化简∣a-3+a+2∣;

(3)a的取值范围内,m是最大的整数,n是最小的整数,求(m+n)m-n的值;

(4)在a的取值范围内,当a取何整数时,不等式2ax+x>2a+1的解为x<1.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两地之间有一条笔直的公路,小明从甲地出发沿公路步行前往乙地,同时小亮从乙地出发沿公路骑车前往甲地,小亮到达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙地.设小明与甲地的距离为(m),小亮与甲地的距离为(m),小明与小亮之间的距离为(m),小明行走的时间为(min).之间的函数图象如图①,之间的函数图象(部分)如图②.

(1)求小亮从乙地到甲地过程中(m)(min)之间的函数表达式;

(2)求小亮从甲地返回到与小明相遇的过程中(m)( min)之间的函数表达式;

(3)在图②中,补全整个过程中(m)(min)之间的函数图象,并确定的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形EFGH四个顶点分别在菱形ABCD的四条边上,BE=BF,将△AEH,△CFG分别沿边EH,FG折叠,当重叠部分为菱形且面积是菱形ABCD面积的 时,则 为( )

A.
B.2
C.
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,由于各人的习惯不同,双手交叉时左手大拇指在上或右手大拇指在上是一个随机事件,曾老师对他任教的学生做了一个调查,统计结果如表所示:

2011届

2012届

2013届

2014届

2015届

参与实验的人数

106

110

98

104

112

右手大拇指在上的人数

54

57

49

51

56

频率

0.509

0.518

0.500

0.490

0.500

根据表格中的数据,你认为在这个随机事件中,右手大拇指在上的概率可以估计为

查看答案和解析>>

同步练习册答案