精英家教网 > 初中数学 > 题目详情

【题目】为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成发如图所示①②③的三块矩形区域,而且这三块矩形区域面积相等.已知矩形区域ABCD的面积为30m2,设BC的长度为xm,所列方程为_____

【答案】x2﹣40x+40=0.

【解析】

根据三块矩形区域面积相等求出AE和BE之间关系,进而表示出AB的长度,利用总面积为30 m2即可求解.

这三块矩形区域面积相等.

∴S矩形AEFD=2S矩形BCFE,即AE=2EB,

设EB=a,则AE=2a,AB=3a,

∴AB+HG+DC=8a,

总长为80米,设BC的长度为x米,

∴AB+HG+DC=80-2x=8a,整理得:a=10-x,

∴3x(10-x)=30,

整理得:x2﹣40x+40=0.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,的垂直平分线交,交

1)若,则的度数是

2)连接,若的周长是

①求的长;

②在直线上是否存在点,使由构成的的周长值最小?若存在,标出点的位置并求的周长最小值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:r如图,在梯形ABCD中,AD∥BC∠BCD=90°.对角线ACBD相交于点E。且AC⊥BD。(1)求证:CD=BC·AD;(2)点F是边BC上一点,连接AF,与BD相交于点G,如果∠BAF=∠DBF,求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商品的进价为每件50元,售价为每件60元,每个月可卖出200件;如果每件商品的售价每上涨1元.则每个月少卖10件.设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.

(1)求y与x的函数关系式;

(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

(3)若每个月的利润不低于2160元,售价应在什么范围?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成发如图所示①②③的三块矩形区域,而且这三块矩形区域面积相等.已知矩形区域ABCD的面积为30m2,设BC的长度为xm,所列方程为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,Rt△ABC 的三个顶点分别是 A(﹣3,2),B(0,4),C(0,2).

(1)将△ABC 以点 O 为旋转中心旋转 180°,画出旋转后对应的△A1B1C1

(2)平移△ABC,使对应点 A2 的坐标为(0,﹣4),写出平移后对应△A2B2C2的中B2,C2点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,弦AD,BC相交于点E,连接OE,已知AD=BC,ADCB.

(1)求证:AB=CD;

(2)如果⊙O的直径为10,DE=1,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点D、E分别在△ABC的边AC、BC上,线段BD与AE交于点F,且CDCA=CECB.

(1)求证:∠CAE=∠CBD;

(2)若,求证:ABAD=AFAE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A(3,6)、B(9,一3),以原点O为位似中心,相似比为,把ABO缩小,则点A的对应点A的坐标是

A.(1,2)

B.(9,18)

C.(9,18)或(9,18)

D.(1,2)或(1,2)

查看答案和解析>>

同步练习册答案