精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,Rt△ABC 的三个顶点分别是 A(﹣3,2),B(0,4),C(0,2).

(1)将△ABC 以点 O 为旋转中心旋转 180°,画出旋转后对应的△A1B1C1

(2)平移△ABC,使对应点 A2 的坐标为(0,﹣4),写出平移后对应△A2B2C2的中B2,C2点坐标.

【答案】1)如图所示,△A1B1C1 即为所求见解析;(2)如图所示见解析,△A2B2C2 即为所求,其中 B2 点坐标为(3,﹣2),C2 点坐标为(3,﹣4).

【解析】

根据旋转作图的步骤:①定点一一旋转中心;②旋转方向;③旋转角度.再根据旋转的性质进行操作即可画出旋转之后的图形;

接下来再根据平移作图的一般步骤,作出平移之后的图形,相信你能画出来.

1)如图所示,△A1B1C1 即为所求.

2)如图所示,△A2B2C2 即为所求,其中 B2 点坐标为(3,﹣2),C2 点坐标为(3,﹣4).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了探索代数式的最小值,

小张巧妙的运用了数学思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点BD,连结ACEC.已知AB=1DE=5BD=8,设BC=x.则则问题即转化成求AC+CE的最小值.

(1)我们知道当ACE在同一直线上时,AC+CE的值最小,于是可求得的最小值等于 ,此时x=

(2)题中小张巧妙的运用了数学思想是指哪种主要的数学思想;

(选填:函数思想,分类讨论思想、类比思想、数形结合思想)

(3)请你根据上述的方法和结论,试构图求出代数式的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,A(﹣15),B(﹣10),C(﹣43).

1)求出△ABC的面积.

2)在图中作出△ABC关于y轴的对称图形△A1B1C1

3)写出点A1B1C1的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)阅读理解:如图1,在中,若.求边上的中线的取值范围.小聪同学是这样思考的:延长,使,连结.利用全等将边转化到,在中利用三角形三边关系即可求出中线的取值范围.在这个过程中小聪同学证三角形全等用到的判定方法是__________;中线的取值范围是__________.

2)问题解决:如图2,在中,点的中点,点边上,点边上,若.求证:.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成发如图所示①②③的三块矩形区域,而且这三块矩形区域面积相等.已知矩形区域ABCD的面积为30m2,设BC的长度为xm,所列方程为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】驾驶员血液中每毫升的酒精含量大于或等于200微克即为酒驾,某研究所经实验测得:成人饮用某品牌38度白酒后血液中酒精浓度y(微克/毫升)与饮酒时间x(小时)之间函数关系如图所示(当4≤x≤10时,yx成反比例).

(1)根据图象分别求出血液中酒精浓度上升和下降阶段yx之间的函数表达式.

(2)问血液中酒精浓度不低于200微克/毫升的持续时间是多少小时?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2,善于思考的小明进行了以下探索:

a+b(其中abmn均为整数)

则有:a+b,∴am2+2n2b2mn,这样小明就找到了一种把类似a+b的式子化为平方式的方法.

请你仿照小明的方法探索并解决下列问题:

(1)abmn均为正整数时,若a+b,用含mn的式子分别表示ab得:a   b   

(2)利用所探索的结论,用完全平方式表示出:7+4   

(3)请化简:.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(  )

A. 掷一枚均匀的骰子,骰子停止转动后,5点朝上是必然事件

B. 明天下雪的概率为,表示明天有半天都在下雪

C. 甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S2=0.4,S2=0.6,则甲的射击成绩较稳定

D. 了解一批充电宝的使用寿命,适合用普查的方式

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为

(1)求口袋中黄球的个数;

(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,

求两次摸 出都是红球的概率;

查看答案和解析>>

同步练习册答案