【题目】甲、乙两名学生参加数学素质测试(有四项),每项测试成绩采用百分制,成绩如表:
学生 | 数与代数 | 空间与图形 | 统计与概率 | 综合与实践 | 平均成绩 | 方差 |
甲 | 87 | 93 | 91 | 85 | 89 | |
乙 | 89 | 96 | 91 | 80 | 13 |
(1)请计算甲的四项成绩的方差和乙的平均成绩;
(2)若数与代数、空间与图形、统计与概率、综合与实践的成绩按4:3:2:1计算,哪个学生数学综合素质测试成绩更好?请说明理由.
【答案】
(1)
解:甲的平均成绩=(87+93+91+85)÷4=89;
乙的平均成绩(89+96+91+80)÷4=89;
甲的方差S甲2= [(87﹣89)2+(93﹣89)2+(91﹣89)2+(85﹣89)2]= ×(16+4+4+16)=10;
乙的方差S乙2= [(89﹣89)2+(96﹣89)2+(91﹣89)2+(80﹣89)2]= ×(0+49+4+81)=33.5;
(2)
解:若按4:3:2:1计分,则乙应当选;
理由如下:
甲的分数= ×87+ ×93+ ×91+ ×85=89.4;
乙的分数= ×89+ ×96+ ×91+ ×80=90.6.
故应选乙;
故答案为:89;10.
【解析】根据平均数和方差及加权成绩的概念计算.
【考点精析】认真审题,首先需要了解统计表(制作统计表的步骤:(1)收集整理数据.(2)确定统计表的格式和栏目数量,根据纸张大小制成表格.(3)填写栏目、各项目名称及数据.(4)计算总计和合计并填入表中,一般总计放在横栏最左格,合计放在竖栏最上格.(5)写好表格名称并标明制表时间).
科目:初中数学 来源: 题型:
【题目】甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;
③甲队比乙队提前3天完成任务;④当x=2或6时,甲乙两队所挖管道长度都相差100米.正确的有______.(在横线上填写正确的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB、CD相交于点O,∠AOC=80°,∠1=30°,求∠2的度数
解:因为∠DOB=∠______ (__________)
_________=80° (已知)
所以,∠DOB=____°(等量代换)
又因为∠1=30°(___________)
所以∠2=∠____- ∠_____ = _____ - _____=_____ °
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某种蔬菜按品质分成三个等级销售,销售情况如表:
等级 | 单价(元/千克) | 销售量(千克) |
一等 | 5.0 | 20 |
二等 | 4.5 | 40 |
三等 | 4.0 | 40 |
则售出蔬菜的平均单价为 元/千克.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结 合.研究数轴我们发现了许多重要的规律:若数轴上点 A、点 B 表示的数分别为 a、b,则A、B 两点之间的距离 AB= ,线段 AB 的中点表示的数为 .
【问题情境】如图,数轴上点A表示的数为-2,点B表示的数为8,点P从点 A 出发, 以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒 2个单 位长度的速度向左匀速运动,设运动时间为t秒(t>0).
【综合运用】(1) 填空:
①A、B两点之间的距离AB=__________,线段AB的中点表示的数为_______;
②用含t的代数式表示:t秒后,点P表示的数为_______;点Q表示的数为_____.
(2) 求当t为何值时,P、Q 两点相遇,并写出相遇点所表示的数;
(3)求当t为何值时,PQ=AB;
(4)若点M为PA的中点,点N为PB的中点,点 P在运动过程中,线段MN的长度是否发 生变化?若变化,请说明理由;若不变,请求出线段MN的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com