精英家教网 > 初中数学 > 题目详情

【题目】阅读材料:各类方程的解法

求解一元一次方程, 根据等式的基本性质,把方程转化为的形式;求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为二元一次方程组来解.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于去分母可能产生不适合原方程的根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想-转化,即:把未知转化为已知.用转化的数学思想,我们还可以解一些新的方程.例如,一元三次方程可以通过因式分解把它转化为,解方程,可得方程的解

问题:方程的解是

拓展:转化思想求方程的解;

变式:转化思想解方程

【答案】1;(2;(3

【解析】

1)根据题意利用因式分解法即可求解;

2)把两边平方得到求出x,再进行检验即可求解;

3)将方程变形为,然后开方化为两个一元二次方程,解方程检验即可.

1

2x=0x-1=0x-5=0

解得x1=0x2=1x3=5

故答案为:015

两边平方,得

解此方程,得

检验:时,成立;

时,不成立

所以原方程的根为

解:

两边开平方,得

整理,得

解得

经检验:都是原方程的根.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点是等边内一点,且,点是边的中点,连接.

1)如图1,若点三点共线,则的数量关系是______

2)如图2,若点三点不共线,问(1)中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由;

3)如图3,若,直接写出的长是______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数的图象与一次函数的图象交于AB两点,点B的纵坐标为﹣1.过点A轴于点C,且OC=1的面积为1

1)求反比例函数和一次函数的表达式;

2)若点D是反比例函数图象上的一点,且到点AC的距离相等,求点D的坐标.

3)结合图象直接写出当时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在中,厘米,点从点开始沿边向点以每秒2厘米的速度移动,同时点从点开始沿边向点以每秒1厘米的速度移动,其中任意一点到达目的地后,两点同时停止运动.求:

1)点从点出发,经过几秒的面积等于1平方厘米?

2)是否存在以点为圆心、为半径的圆与直线相切,若存在,求出经过几秒相切?若不存在,请说明理由;

3)如图2,点内的一个动点,且满足,求线段的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数的图象与轴分别交于两点,与轴交于点,,则由抛物线的特征写出如下结论中错误的是( )

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线yax2bxc的图象如图所示,对称轴为直线x1.以下结论:①2a>-b;②4a2bc0;③mamb)>abm是大于1的实数);④3ac0其中正确结论的个数为( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】山西汾酒,又称“杏花村酒”.酿造汾酒是选用晋中平原的“一把抓高粱”为原料.汾阳县某村民合作社2016年种植“一把抓高粱”100亩,2018年该合作社扩大了“一把抓高梁”的种植面积,共种植144.

1)求该合作社这两年种植“一把抓高梁”亩数的平均增长率;

2)某粮店销售“一把抓高粱”售价为13/斤,每天可售出30斤,每斤的盈利是1.5.为了减少库存,粮店决定搞促销活动.在销售中发现:售价每降价0.1元,则可多售出2.若该粮店某天销售“一把抓高梁”的盈利为40元,则该店当天销售单价降低了多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,BDABC的角平分线,且BD=BCEBD延长线上的一点,BE=BA,过EEFABF为垂足.下列结论:①△ABDEBC;②∠BCE+BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正确的是(   )

A.①②③B.①③④C.①②④D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为响应党的文化自信号召,某校开展了古诗词诵读大赛活动,现随机抽取部分同学的成绩进行统计,并绘制成如下的两个不完整的统计图,请结合图中提供的信息,解答下列各题:

(1)直接写出a的值,a=   ,并把频数分布直方图补充完整.

(2)求扇形B的圆心角度数.

(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?

查看答案和解析>>

同步练习册答案