精英家教网 > 初中数学 > 题目详情

【题目】如图,AB∥CD,直线EF分别交AB,CD于点E,F,∠BEF的平分线与∠DFE的平分线相交于点P,试说明△EPF为直角三角形.

【答案】证明见解析

【解析】试题分析:由ABCD,可知∠BEF与∠DFE互补,由角平分线的性质可得∠PEF+PFE=90°,由三角形内角和定理可得∠P=90°,即可判定EPF为直角三角形.

试题解析:

ABCD,

∴∠BEF+DFE=180°.

EP为∠BEF的平分线,FP为∠EFD的平分线,

∴∠PEF=BEF,PFE=DFE.

∴∠PFE+PEF= (BEF+DFE)= ×180°=90°.

∴∠EPF=180°-(PEF+PFE)=90°.

∴△EFP为直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)
(1)求抛物线的解析式;
(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积.
(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某市民健身广场的平面示意图,它是由6个正方形拼成的长方形,已知中间最小的正方形A的边长是1.

(1)若设图中最大正方形B的边长是x,请用含x的代数式分别表示出:

正方形F的边长= ;正方形E的边长= ;正方形C的边长= ;

(2)观察图形的特点可知,长方形相对的两边是相等的(如图中的MN=PQ).根据等量关系可求出x= ;

(3)现沿着长方形广场的四条边铺设下水管道,由甲、乙2个工程队单独铺设分别需要10天、15天完成.如果两队从同一点开始,沿相反的方向同时施工2天后,因甲队另有任务,余下的工程由乙队单独施工,试问乙还要多少天完成?甲、乙2个工程队各铺设多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知平行四边形ABCD的顶点A在第三象限,对角线AC的中点在坐标原点,一边AB与x轴平行且AB=2,若点A的坐标为(a,b),则点D的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次综合实践活动中,小明要测某地一座古塔AE的高度.如图,已知塔基顶端B(和A、E共线)与地面C处固定的绳索的长BC为80m.她先测得∠BCA=35°,然后从C点沿AC方向走30m到达D点,又测得塔顶E的仰角为50°,求塔高AE.(人的高度忽略不计,结果用含非特殊角的三角函数表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知凸四边形ABCD中,∠A=∠C=90°.

(1)如图1,若DE平分∠ADC,BF平分∠ABC的邻补角,判断DEBF位置关系并证明.

(2)如图2,若BF、DE分别平分∠ABC、∠ADC的邻补角,判断DEBF位置关系并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x千米/小时,根据题意可列方程是(  )
A. =15
B. =
C. =15
D. =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知|a+b|+|a-b|-2b=0,在数轴上给出关于ab的四种位置关系如图所示,则可能成立的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用配方法解下列方程,其中应在方程的左右两边同时加上4的是(  )
A. -2x=5
B. +4x=5
C. +2x=5
D.2 -4x=5

查看答案和解析>>

同步练习册答案