【题目】如图,在平面立角坐标系中,反比例函数y=(k≠0,x<0)与一次函数y=ax+b的图象交于点A(﹣3,1)、B(m,3).点C的坐标为(1,0),连接AC,BC.
(1)求反比例函数和一次函数的表达式;
(2)当x<0时,直接写出不等式≥ax+b的解集 ;
(3)若点M为y轴的正半轴上的动点,当△ACM是直角三角形时,直接写出点M的坐标 .
【答案】(1)y=﹣,y=x+4;(2)﹣1≤x<0或x≤﹣3;(3)(0,13)或(0,)
【解析】
(1)用待定系数法即可求解;
(2)观察函数图象即可求解;
(3)分MC是斜边、CA是斜边、AM是斜边三种情况,分别求解即可.
解:(1)将点A的坐标代入反比例函数表达式得:1=,解得:k=﹣3,
将点B的坐标代入反比例函数表达式并解得:m=﹣1,故点B(﹣1,3),
将点A、B的坐标代入一次函数表达式得: ,解得,
故反比例函数和一次函数的表达式分别为:y=﹣,y=x+4;
(2)观察函数图象得,当x<0时,x≥﹣1或x≤﹣3时,不等式≥ax+b成立,
即不等式的解集为:﹣1≤x<0或x≤﹣3,
故答案为:﹣1≤x<0或x≤﹣3;
(3)设点M(0,m)(m>0),点C(1,0)、A(﹣3,1),
则MC2=1+m2,CA2=(1+3)2+1=17,AM2=9+(m﹣1)2,
当MC是斜边时,则1+m2=17+9+(m﹣1)2,解得:m=13;
当CA是斜边时,同理可得:m=(负值已舍去);
当AM是斜边时,同理可得:m=﹣4(舍去);
故答案为(0,13)或(0,).
科目:初中数学 来源: 题型:
【题目】将矩形绕点顺时针旋转得到矩形,点的对应点分别为
(1)当点落在上时
①如图1,若,求证:
②如图2,交于点.若,求证:;
(2)若,
①如图3,当过点C时,则的长=_____.
②当时,作,绕点转动,当直线经过时,直线交边于,的值=______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示.某校计划将一块形状为锐角三角形ABC的空地进行生态环境改造.已知△ABC的边BC长120米,高AD长80米.学校计划将它分割成△AHG、△BHE、△GFC和矩形EFGH四部分(如图).其中矩形EFGH的一边EF在边BC上.其余两个顶点H、G分别在边AB、AC上.现计划在△AHG上种草,每平方米投资6元;在△BHE、△FCG上都种花,每平方米投资10元;在矩形EFGH上兴建爱心鱼池,每平方米投资4元.
(1)当FG长为多少米时,种草的面积与种花的面积相等?
(2)当矩形EFGH的边FG为多少米时,△ABC空地改造总投资最小,最小值为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的盒子中装有两个红球和一个蓝球.这些球除颜色外都相同.
(1)从中随机摸出一个球.记下颜色后放回.再从中随机摸出一个球.
①请用列表法或树状图法,求第一次摸到蓝球,第二次摸到红球的概率;
②请直接写出两次摸到的球的颜色能配成紫色的概率 .
(2)从中随机摸出一个球,记下颜色后不放回.再从中随机摸出一个球,请直接写出两次摸到的球的颜色能配成紫色的概率 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】按要求作图,不要求写作法,但要保留作图痕迹.
(1)如图1,矩形ABCD的顶点A、D在圆上, B、C两点在圆内,已知圆心O,请仅用无刻度的直尺作图,请作出直线l⊥AD;
(2)请仅用无刻度的直尺在下列图2和图3中按要求作图.(补上所作图形顶点字母)
①图2是矩形ABCD,E,F分别是AB和AD的中点,以EF为边作一个菱形;
②图3是矩形ABCD,E是对角线BD上任意一点(BE>DE),以AE为边作一个平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,正方形ABCD绕点A(0,6)旋转,当点B落在x轴上时,点C刚好落在反比例函数(k≠0,x>0)的图像上.已知sin∠OAB=.
(1)求反比例函数的表达式;
(2)反比例函数的图像是否经过AD边的中点,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图①、图②、图③均是4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点、、、、、均在格点上,在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求长写出画法.
(1)在图①中以线段为边画一个直角△;
(2)在图②中以线段为边画一个轴对称△,使其面积为5;
(3)在图③中以线段为边画一个轴对称四边形,使其面积为6.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年是脱贫攻坚决胜之年,我市某乡为了增加农民收入,决定利用当地优质山林土地资源发展园林绿化树苗培育产业.前期由乡农技站引进“银杏”、“罗汉松”、“广玉兰”、“竹柏”四个品种共棵幼苗进行试育成苗实验,并把实验数据绘制成下图所示的扇形统计图和不完整的条形统计图,已知实验中竹柏的成苗率是.
(1)请你补全条形统计图;
(2)如果从这棵实验幼苗中随机抽取一棵幼苗,求它能成苗的概率;
(3)根据市场调查,这四个品种的树苗的幼苗进价、成苗售价和市场需求如下表所示:
树苗品种 | 银杏 | 罗汉松 | 广玉兰 | 竹柏 |
每棵幼苗进价(元) | ||||
每棵成苗售价(元) | ||||
市场需求(万棵) |
假设除了购买幼苗外,培育每棵成苗还需肥料等支出元(未成功培育成成苗的此项支出忽略不计),该乡根据市场需求组织村农民培育银杏树苗和罗汉松树苗并将全部成苗销售完成后,可为本乡村农民增加收入多少万元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com