精英家教网 > 初中数学 > 题目详情

【题目】如图,已知二次函数y=ax2+bx+c的象经过A(﹣1,0)、B(3,0)、N(2,3)三点,且与y轴交于点C.

(1)求这个二次函数的解析式,并写出顶点M及点C的坐标;
(2)若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;
(3)点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切?如果存在,请求出点P的坐标;如果不存在,请说明理由.

【答案】
(1)

解:因为二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、B(3,0)、N(2,3)

所以,可建立方程组: ,解得:

所以,所求二次函数的解析式为y=﹣x2+2x+3,

所以,顶点M(1,4),点C(0,3)


(2)

解:直线y=kx+d经过C、M两点,

所以

即k=1,d=3,

直线解析式为y=x+3.

令y=0,得x=﹣3,

故D(﹣3,0)

∴CD= ,AN= ,AD=2,CN=2

∴CD=AN,AD=CN(2分)

∴四边形CDAN是平行四边形


(3)

解:假设存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切,

因为这个二次函数的对称轴是直线x=1,

故可设P(1,y0),

则PA是圆的半径且PA2=y02+22

过P做直线CD的垂线,垂足为Q,则PQ=PA时以P为圆心的圆与直线CD相切.

由第(2)小题易得:△MDE为等腰直角三角形,

故△PQM也是等腰直角三角形,

由P(1,y0)得PE=y0,PM=|4﹣y0|,

由PQ2=PA2得方程:

解得 ,符合题意,

所以,满足题意的点P存在,其坐标为(1, )或(1,


【解析】(1)根据题意将点A,B,N的坐标代入函数解析式,组成方程组即可求得;(2)求得点C,M的坐标,可得直线CM的解析式,可求得点D的坐标,即可得到CD= ,AN= ,AD=2,CN=2,根据平行四边形的判定定理可得四边形CDAN是平行四边形;(3)假设存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切,因为这个二次函数的对称轴是直线x=1,故可设P(1,y0),则PA是圆的半径且PA2=y02+22
过P做直线CD的垂线,垂足为Q,则PQ=PA时以P为圆心的圆与直线CD相切.
由第(2)小题易得:△MDE为等腰直角三角形,故△PQM也是等腰直角三角形,继而求得满足题意的点P存在,其坐标为(1, )或(1, ).
【考点精析】根据题目的已知条件,利用二次函数的性质的相关知识可以得到问题的答案,需要掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:(A组:x<155; B组:155≤x<160; C组:160≤x<165; D组165≤x<170;E组:x≥170)

根据图表提供的信息,回答下列问题:
(1)样本中,男生的身高众数在组,中位数在组.
(2)样本中,女生的身高在E组的人数有人.
(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上,另一个顶

点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图(3),

则三角板的最大边的长为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在梯形ABCD中,AB∥DC,BD⊥AD,AD=DC=BC=2cm,那么梯形ABCD的面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:求值:1+2+22+23+24++22013

解:设S=1+2+22+23+24++22013.将等式两边同时乘以2,得

2S=2+22+23+24++22013+22014

将下式减去上式,得2S﹣S=22014﹣1.

S=1+2+22+23+24++22013=22014﹣1.

请你仿照此法计算1+3+32+33+34++32018的值是(  )

A. 32018﹣1 B. C. 32019﹣1 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】化简计算
(1)计算: ﹣( ﹣1)0﹣2cos30°
(2)解方程: + =2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某中学每天中午总是在规定时间打开学校大门,七年级同学小明每天中午同一时间从家骑自行车到学校,星期一中午他以每小时15千米的速度到校,结果在校门口等了6分钟才开门,星期二中午他以每小时9千米的速度到校,结果校门已开了6分钟,星期三中午小明想准时到达学校门口,那么小明骑自行车的速度应该为每小时多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AB=4,BC=5,∠ABC=60°,平行四边形ABCD的对角线AC、BD交于点O,过点O作OE⊥AD,则OE=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料: 小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.
小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图 2).
请回答:求∠ACE的度数,AC的长.
参考小腾思考问题的方法,解决问题:
如图 3,在四边形 ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.

查看答案和解析>>

同步练习册答案