精英家教网 > 初中数学 > 题目详情

【题目】如图,点DE是等边三角形ABC的边BCAC上的点,且CD=AEADBE于点PBQAD于点Q,已知PE=2PQ=6,则AD等于( )

A.10B.12C.14D.16

【答案】C

【解析】

由题中条件可得△ABE≌△CAD,得出AD=BE,∠ABE=CAD,进而得出∠BPD=60°.在RtBPQ中,根据30度角所对直角边等于斜边的一半,求出BP的长,进而可得结论.

∵△ABC是等边三角形,∴AB=AC,∠BAC=C=60°.

又∵AE=CD,∴△ABE≌△CADSAS),∴∠ABE=CADAD=BE,∴∠BPD=ABE+BAP=CAD+BAP=BAC=60°.

BQAD,∴∠PBQ=30°,∴BP=2PQ=2×6=12,∴AD=BE=BP+PE=12+2=14

故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,O是等边内一点绕点C按顺时针方向旋转,连接已知

求证:是等边三角形;

,试判断的形状,并说明理由;

探究:当为多少度时,是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c的对称轴为直线x=1,抛物线与x轴交于A、B两点(点A在点B的左侧),且AB=4,又P是抛物线上位于第一象限的点,直线APy轴交于点D,与对称轴交于点E,设点P的横坐标为t.

(1)求点A的坐标和抛物线的表达式;

(2)当AE:EP=1:2时,求点E的坐标;

(3)记抛物线的顶点为M,与y轴的交点为C,当四边形CDEM是等腰梯形时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的口袋里装有分别标有汉字”、“”、“”、“的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.

(1)若从中任取一个球,球上的汉字刚好是的概率为__________.

(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求取出的两个球上的汉字能组成历城的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】乐乐根据学习函数的经验,对函数y=|x-1|的图象与性质进行了研究,下面是乐乐的研究过程,请补充完成:

(1)函数y=|x-1|的自变量x的取值范围是 .

(2)列表,找出yx的几组对应值.

x

-1

0

1

2

3

y

b

1

0

1

2

(3)在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象.

(4)①函数的最小值为

②写出一条该函数的其它性质: .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有0102030的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.

1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;

2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=4,BC=3,点O为对角线BD的中点,点P从点A出发,沿折线AD﹣DO﹣OC以每秒1个单位长度的速度向终点C运动,当点P与点A不重合时,过点P作PQ⊥AB于点Q,以PQ为边向右作正方形PQMN,设正方形PQMN与△ABD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).

(1)求点N落在BD上时t的值;

(2)直接写出点O在正方形PQMN内部时t的取值范围;

(3)当点P在折线AD﹣DO上运动时,求S与t之间的函数关系式;

(4)直接写出直线DN平分△BCD面积时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,△ABC是等边三角形,D是边BC上的任意一点,∠ADF=60°,且DF交∠ACE的角平分线于点F.

1)求证:AC=CDCF

2)如图2,当点DBC的延长上时,猜想ACCDCF的数量关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边且在AD的上方作等腰直角三角形ADF,连接CF

1)若ABAC,∠BAC90°

当点D在线段BC上时(与点B不重合),试探究CFBD的数量关系和位置关系,并说明理由.

当点D在线段BC的延长线上时,中的结论是否仍然成立,请在图中画出相应图形并直接写出你的猜想.

2)如图,若ABAC,∠BAC90°,∠BCA45°,点D在线段BC上运动,试探究CFBC的位置关系,并说明理由.

查看答案和解析>>

同步练习册答案