精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c的对称轴为直线x=1,抛物线与x轴交于A、B两点(点A在点B的左侧),且AB=4,又P是抛物线上位于第一象限的点,直线APy轴交于点D,与对称轴交于点E,设点P的横坐标为t.

(1)求点A的坐标和抛物线的表达式;

(2)当AE:EP=1:2时,求点E的坐标;

(3)记抛物线的顶点为M,与y轴的交点为C,当四边形CDEM是等腰梯形时,求t的值.

【答案】(1)y=x2﹣2x﹣3;(2)E(1,4);(3)t=4.

【解析】分析:1)依据抛物线的对称性可得到AB的坐标利用抛物线的交点式可得到抛物线的解析式

2)过点PPFyx轴与点F则△AEG∽△APF从而可得到AF=6然后可求得PF的长从而可得到EG的长故此可得到点E的坐标

3先证明∠ADO=CME然后再求得点C和点M的坐标从而可得到tanADO=1于是可得到OD=AO=1故此可得到AP的解析式最后求得直线AP与抛物线的交点坐标即可.

详解:(1AB=4抛物线y=x2+bx+c的对称轴为直线x=1∴点A到对称轴的距离为2A(﹣10),B30),y=(x+1)(x3)整理得y=x22x3

2)如下图所示过点PPFx垂足为F

EGPFAEEP=12==

又∵AG=2AF=6F50).

x=5y=12EG=4E14).

3CDEM∴∠ADO=AEM

又∵四边形CDEM是等腰梯形∴∠ADO=CME∴∠ADO=CME

y=x22x3C0,﹣3),M1,﹣4

tanDAO=tanCME=1OA=OD=1∴直线AP的解析式为y=x+1

y=x+1代入y=x22x3x+1=x22x3解得x=4x=﹣1(舍去)

∴点P的横坐标为4t=4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD是高,AEBF是角平分线,它们相交于点O,∠BAC62°,∠C70°,求∠EAD,∠BOE的度数分别是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=2x+4x轴、y轴分别交于A、B两点,以OA为边在x轴的下方作等边三角形OAC,将点C向上平移m个单位长度,使其对应点C′恰好落在直线AB上,则m=(  )

A. 2﹣ B. 2+ C. 4﹣ D. 4+

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴交于点C(0,4).

(1)求直线BC与抛物线的解析式;

(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,当 MN的值最大时,求△BMN的周长.

(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=4S2,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在ABC中,∠BAC=130°AB的垂直平分线MEBC于点M,交AB于点EAC的垂直平分线NFBC于点N,交AC于点F,则∠MAN为(

A.80°B.70°C.60°D.50°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解九年级学生的体能情况,学校组织了一次体能测试,并随机选取50名学生的成绩进行统计,得出相关统计表和统计图(其中部分数据不慎丢失,暂用字母m,n表示).

成绩等级

优秀

良好

合格

不合格

人数

m

30

n

5

请根据图表所提供的信息回答下列问题:

(1)统计表中的m=   ,n=   ;并补全频数分布直方图;

(2)若该校九年级有500名学生,请据此估计该校九年级学生体能良好以上的学生有多少人?

(3)根据以往经验,经过一段时间训练后,有60%的学生成绩可以上升一个等级,请估计经过训练后九年级学生体能达标率(成绩在良好及以上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两个一次函数y1=ax+by2=bx+a,它们在同一直角坐标系中的图象可能是( )

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点DE是等边三角形ABC的边BCAC上的点,且CD=AEADBE于点PBQAD于点Q,已知PE=2PQ=6,则AD等于( )

A.10B.12C.14D.16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】暑假到了,即将迎来手机市场的销售旺季.某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:

进价(元/部)

4000

2500

售价(元/部)

4300

3000

该商场计划投入15.5万元资金,全部用于购进两种手机若干部,期望全部销售后可获毛利润不低于2万元.(毛利润=(售价﹣进价)×销售量)

1)若商场要想尽可能多的购进甲种手机,应该安排怎样的进货方案购进甲乙两种手机?

2)通过市场调研,该商场决定在甲种手机购进最多的方案上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.

查看答案和解析>>

同步练习册答案