精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AD是高,AEBF是角平分线,它们相交于点O,∠BAC62°,∠C70°,求∠EAD,∠BOE的度数分别是多少?

【答案】EAD=11°,∠BOE=55°.

【解析】

ADBC,可得∠ADC=90°,根据三角形内角和定理可得∠CAD=180°-90°-70°=20°,由于∠BAC=62°AE是∠BAC的角平分线,可求出∠EAC=BAE=31°,继而求出∠EAD=EAC-CAD=31°-20°=11°,根据三角形内角和定理可得:ABC=180°-BAC-C=48°,由于BF是∠ABC的角平分线,可得∠ABO=24°,因此∠BOE=ABO+BAE=24°+31°=55°

解∵ADBC

∴∠ADC=90°

∵∠C=70°

∴∠CAD=180°-90°-70°=20°,

∵∠BAC=62°AE是∠BAC的角平分线,

∴∠EAC=BAE=31°,

∴∠EAD=EAC-CAD=31°-20°=11°,

ABC=180°-BAC-C=48°

BF是∠ABC的角平分线,

∴∠ABO=24°

∴∠BOE=ABO+BAE=24°+31°=55°

故∠EAD,∠BOE的度数分别是11°55°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如果三角形的两个内角αβ满足2α+β=90°,那么我们称这样的三角形为准互余三角形”.

(1)若ABC准互余三角形”,C>90°,A=60°,则∠B=   °;

(2)如图①,在RtABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明ABD准互余三角形.试问在边BC上是否存在点E(异于点D),使得ABE也是准互余三角形?若存在,请求出BE的长;若不存在,请说明理由.

(3)如图②,在四边形ABCD中,AB=7,CD=12,BDCD,ABD=2BCD,且ABC准互余三角形,求对角线AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1在等腰Rt△ABCBAC=90°EAC上(且不与点AC重合.在ABC的外部作等腰Rt△CED使CED=90°连接AD分别以ABAD为邻边作平行四边形ABFD连接AF

1求证AEF是等腰直角三角形

2如图2CED绕点C逆时针旋转当点E在线段BC上时连接AE求证AF=AE

3如图3CED绕点C继续逆时针旋转当平行四边形ABFD为菱形CEDABC的下方时AB=2CE=2求线段AE的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知中,分别平分交于点.

1)直接写出的数量关系;

2)若,利用(1)的关系,求出的度数;

3)利用(2)的结果,试判断的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DE分别是△ABC的边ABBC上的点,AB3BDBECE.设△ADF的面积为S1,△CEF的面积为S2,若,则S1-S2的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰RtABC中,∠ABC90°,点AB分别在坐标轴上.

(1)如图①,若点C的横坐标为5,求点B的坐标.

(2)如图②,若BCx轴于M,过CCDBCy轴于D . 求证:BCCDMC.

(3)如图③,若点A的坐标为(40),点By轴正半轴上的一个动点,分别以OBAB为直角边在第一、第二象限作等腰RtOBF(OBF90°)、等腰RtABE(ABE90°),连接EFy轴于点P,当点By轴上运动时,PB的长度是否发生改变?若不变,求出PB的值;若变化,求PB的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2﹣2ax+3的图象与x轴分别交于点A,B,与y轴交于点C,已知BO=CO.

(1)求抛物线的解析式;

(2)点E在线段OB上,过点Ex轴的垂线交抛物线于点P,连结PA,若PACE,垂足为点F,求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O是等边内一点绕点C按顺时针方向旋转,连接已知

求证:是等边三角形;

,试判断的形状,并说明理由;

探究:当为多少度时,是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c的对称轴为直线x=1,抛物线与x轴交于A、B两点(点A在点B的左侧),且AB=4,又P是抛物线上位于第一象限的点,直线APy轴交于点D,与对称轴交于点E,设点P的横坐标为t.

(1)求点A的坐标和抛物线的表达式;

(2)当AE:EP=1:2时,求点E的坐标;

(3)记抛物线的顶点为M,与y轴的交点为C,当四边形CDEM是等腰梯形时,求t的值.

查看答案和解析>>

同步练习册答案