【题目】如图,在△ABC中,AD是高,AE,BF是角平分线,它们相交于点O,∠BAC=62°,∠C=70°,求∠EAD,∠BOE的度数分别是多少?
【答案】∠EAD=11°,∠BOE=55°.
【解析】
由AD⊥BC,可得∠ADC=90°,根据三角形内角和定理可得∠CAD=180°-90°-70°=20°,由于∠BAC=62°,AE是∠BAC的角平分线,可求出∠EAC=∠BAE=31°,继而求出∠EAD=∠EAC-∠CAD=31°-20°=11°,根据三角形内角和定理可得:∠ABC=180°-∠BAC-∠C=48°,由于BF是∠ABC的角平分线,可得∠ABO=24°,因此∠BOE=∠ABO+∠BAE=24°+31°=55°.
解∵AD⊥BC,
∴∠ADC=90°,
∵∠C=70°,
∴∠CAD=180°-90°-70°=20°,
∵∠BAC=62°,AE是∠BAC的角平分线,
∴∠EAC=∠BAE=31°,
∴∠EAD=∠EAC-∠CAD=31°-20°=11°,
∠ABC=180°-∠BAC-∠C=48°
∵BF是∠ABC的角平分线,
∴∠ABO=24°
∴∠BOE=∠ABO+∠BAE=24°+31°=55°.
故∠EAD,∠BOE的度数分别是11°,55°.
科目:初中数学 来源: 题型:
【题目】如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.
(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B= °;
(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.
(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“准互余三角形”,求对角线AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)求证:△AEF是等腰直角三角形;
(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;
(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知中,,分别平分和,、交于点.
(1)直接写出与的数量关系;
(2)若,利用(1)的关系,求出的度数;
(3)利用(2)的结果,试判断、、的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,D,E分别是△ABC的边AB,BC上的点,AB=3BD,BE=CE.设△ADF的面积为S1,△CEF的面积为S2,若,则S1-S2的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰Rt△ABC中,∠ABC=90°,点A,B分别在坐标轴上.
(1)如图①,若点C的横坐标为5,求点B的坐标.
(2)如图②,若BC交x轴于M,过C作CD⊥BC交y轴于D . 求证:BC-CD=MC.
(3)如图③,若点A的坐标为(-4,0),点B是y轴正半轴上的一个动点,分别以OB,AB为直角边在第一、第二象限作等腰Rt△OBF(∠OBF=90°)、等腰Rt△ABE(∠ABE=90°),连接EF交y轴于点P,当点B在y轴上运动时,PB的长度是否发生改变?若不变,求出PB的值;若变化,求PB的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2﹣2ax+3的图象与x轴分别交于点A,B,与y轴交于点C,已知BO=CO.
(1)求抛物线的解析式;
(2)点E在线段OB上,过点E作x轴的垂线交抛物线于点P,连结PA,若PA⊥CE,垂足为点F,求OE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O是等边内一点将绕点C按顺时针方向旋转得,连接已知.
求证:是等边三角形;
当时,试判断的形状,并说明理由;
探究:当为多少度时,是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c的对称轴为直线x=1,抛物线与x轴交于A、B两点(点A在点B的左侧),且AB=4,又P是抛物线上位于第一象限的点,直线AP与y轴交于点D,与对称轴交于点E,设点P的横坐标为t.
(1)求点A的坐标和抛物线的表达式;
(2)当AE:EP=1:2时,求点E的坐标;
(3)记抛物线的顶点为M,与y轴的交点为C,当四边形CDEM是等腰梯形时,求t的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com