精英家教网 > 初中数学 > 题目详情

【题目】如图所示,在ABC中,∠BAC=130°AB的垂直平分线MEBC于点M,交AB于点EAC的垂直平分线NFBC于点N,交AC于点F,则∠MAN为(

A.80°B.70°C.60°D.50°

【答案】A

【解析】

先根据“AB的垂直平分线MEBC于点M,交AB于点EAC的垂直平分线NFBC于点N,交AC于点F”得出∠BAM=ABM,∠CAN=ACN,再列出方程∠BAM+MAN+CAN=130°和∠MAN+2(BAM+CAN) =180°,解方程即可得出答案.

EMAB的垂直平分线,NFAC的垂直平分线

AM=BMAN=NC

∴∠BAM=ABM,∠CAN=ACN

设∠BAM=ABM =x,∠CAN=ACN =y

∴∠BAC=BAM+MAN+CAN=x+y+MAN=130°

在△AMN中,∠MAN+AMN+ANM=MAN+2BAM+2CAN=MAN+2(BAM+CAN)= MAN+2(x+y)=180°

联立解得:∠MAN=80°x+y=50°

故答案选择:A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,DE分别是△ABC的边ABBC上的点,AB3BDBECE.设△ADF的面积为S1,△CEF的面积为S2,若,则S1-S2的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b分别交y轴、x轴于C、D两点,与反比例函数y=(x>0)的图象交于A(m,8),B(4,n)两点.

(1)求一次函数的解析式;

(2)根据图象直接写出kx+b﹣<0x的取值范围;

(3)求AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为学生装一台直饮水器,课间学生到直饮水器打水.他们先同时打开全部的水笼头放水,后来又关闭了部分水笼头.假设前后两人接水间隔时间忽略不计,且不发生泼洒,直饮水器的余水量(升)与接水时间(分)的函数图象如图,请结合图象回答下列问题:

1)求当时,之间的函数关系式;

2)假定每人水杯接水0.7升,要使40名学生接水完毕,课间10分钟是否够用?请计算回答.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点,作△ABC的外接圆⊙O,则弧AC的长等于(  )

A. π B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c的对称轴为直线x=1,抛物线与x轴交于A、B两点(点A在点B的左侧),且AB=4,又P是抛物线上位于第一象限的点,直线APy轴交于点D,与对称轴交于点E,设点P的横坐标为t.

(1)求点A的坐标和抛物线的表达式;

(2)当AE:EP=1:2时,求点E的坐标;

(3)记抛物线的顶点为M,与y轴的交点为C,当四边形CDEM是等腰梯形时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在ABC中,ADBC边上的高线,CEAB边上的中线,DGCEG,且CD=AE.

1)求证:CG=EG.

2)求证:∠B=2ECB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】乐乐根据学习函数的经验,对函数y=|x-1|的图象与性质进行了研究,下面是乐乐的研究过程,请补充完成:

(1)函数y=|x-1|的自变量x的取值范围是 .

(2)列表,找出yx的几组对应值.

x

-1

0

1

2

3

y

b

1

0

1

2

(3)在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象.

(4)①函数的最小值为

②写出一条该函数的其它性质: .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F,作CM⊥AD,垂足为M,下列结论不正确的是(  )

A. AD=CE B. MF=CF C. ∠BEC=∠CDA D. AM=CM

查看答案和解析>>

同步练习册答案