精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AD=18,点E在AC上且CE= AC,连接BE,与AD相交于点F.若BE=15,则△DBF的周长是

【答案】24
【解析】解:∵在△ABC中,AB=AC,AD⊥BC,
∴AD是△ABC的中线,
∵CE= AC,即BE是△ABC的中线,
∵BE与AD相交于点F,
∴F是△ABC的重心,
∴BF= BE=10,DF= AD=6.
在Rt△BDF中,∵∠BDF=90°,
∴BD= =8,
∴△DBF的周长=BD+DF+BF=8+6+10=24.
所以答案是24.
【考点精析】认真审题,首先需要了解勾股定理的概念(直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在等腰三角形ABC中,AB=AC,O为AB上一点,以O为圆心,OB长为半径的圆交BC于D,DE⊥AC交AC于E.

(1)求证:DE是⊙O的切线;
(2)若⊙O与AC相切于F,AB=AC=8cm,sinA= ,求⊙O的半径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了促进营业额不断增长,某大型超市决定购进甲、乙两种商品,已知甲种商品每件进价为150元,售价为168元;乙种商品每件进价为120元,售价为140元,该超市用42000元购进甲、乙两种商品,销售完后共获利5600元.
(1)该超市购进甲、乙两种商品各多少件?
(2)超市第二次以原价购进甲、乙两种商品共400件,且购进甲种商品的件数多于乙种商品的件数,要使第二次经营活动的获利不少于7580元,共有几种进货方案?写出利润最大的进货方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为了解全校学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.同时把调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整).请根据图中提供的信息解答下列问题:

(1)在这次调查中,一共抽取了多少名学生?通过计算补全条形统计图;
(2)在扇形统计图中,“公交车”部分所对应的圆心角是多少度?
(3)若全校有1600名学生,估计该校乘坐私家车上学的学生约有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发,快车到达乙地后,快车停止运动,慢车继续以原速匀速驶往甲地,直至慢车到达甲地为止,设慢车行驶的时间为t(h),两车之间的距离为s(km),图中的折线表示s与t之间的函数关系.根据图象提供的信息有下列说法:①甲、乙两地之间的距离为900km;②行驶4h两车相遇;③快车的速度为150km/h;④行驶6h两车相距400km;⑤相遇时慢车行驶了240km;⑥快车共行驶了6h.其中符合图象描述的说法有( )个.

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1在平面直角坐标系中,点O为坐标原点,已知抛物线y=a(x+1)(x﹣3)与x轴相交于A,B两点(点A在点B的左侧),与y轴正半轴交于点C,且∠ABC=45°.

(1)求a的值;
(2)如图2,点D在线段BC上(不与C重合),当AD=AC时,求D点坐标;

(3)如图3,在(2)的条件下,E为抛物线上一点,且在第一象限,过E作EF∥AD与AC相交于点F,当EF被BC平分时,求点E坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y1=kx+b的图象与反比例函数y2= 的图象相交于A,B两点,直线AB与x轴相交于点C,点B的坐标为(﹣6,m),线段OA=5,E为x轴正半轴上一点,且cos∠AOE=

(1)求反比例函数的解析式;
(2)求证:SAOC=2SBOC
(3)直接写出当y1>y2时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在课外学习时遇到这样一个问题:
定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1 , b1 , c1是常数)与y=a2x2+b2x+c2(a2≠0,a2 , b2 , c2是常数)满足a1+a2=0,b1=b2 , c1+c2=0,则称这两个函数互为“旋转函数”.
求函数y=﹣x2+3x﹣2的“旋转函数”.
小明是这样思考的:由函数y=﹣x2+3x﹣2可知,a1=﹣1,b1=3,c1=﹣2,根据a1+a2=0,b1=b2 , c1+c2=0,求出a2 , b2 , c2 , 就能确定这个函数的“旋转函数”.
请参考小明的方法解决下面问题:
(1)写出函数y=﹣x2+3x﹣2的“旋转函数”;
(2)若函数y=﹣x2+ mx﹣2与y=x2﹣2nx+n互为“旋转函数”,求(m+n)2015的值;
(3)已知函数y=﹣ (x+1)(x﹣4)的图象与x轴交于点A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1 , B1 , C1 , 试证明经过点A1 , B1 , C1的二次函数与函数y=﹣ (x+1)(x﹣4)互为“旋转函数.”

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场销售一种商品,在一段时间内,该商品的销售量y(千克)与每千克的销售价x(元)满足一次函数关系(如图所示),其中30≤x≤80.
(1)求y关于x的函数解析式;
(2)若该种商品每千克的成本为30元,当每千克的销售价为多少元时,获得的利润为600元?

查看答案和解析>>

同步练习册答案