精英家教网 > 初中数学 > 题目详情

【题目】如图,直角坐标系中,A是反比例函数yx0)图象上一点,By轴正半轴上一点,以OAAB为邻边作ABCO.若点CBC中点D都在反比例函数yk0x0)图象上,则k的值为(  )

A. 3B. 4C. 6D. 8

【答案】C

【解析】

如图,连接AC,交OBE,设A点坐标为(a),由平行四边形性质可得CE=AE,由E点在y轴上可得C点横坐标为-a,根据C点在y=(k<0x<0)图象上,可得C点坐标为(-a),进而可得点EBD坐标,根据D点在y=(k<0x<0)图象上,代入D点坐标求出k值即可.

如图,连接AC,交OBE,设A点坐标为(a),

∵四边形OABC是平行四边形,OBAC是对角线,

CE=EA

E点在y轴上,

E点横坐标为0

C点横坐标为-a

C点在y=(k<0x<0)图象上,

C点坐标为(-a)

E点坐标为(0),

EOB中点,

B点坐标为(0

DBC中点,

D点坐标为(

D点在y=(k<0x<0)图象上,

k=() =

解得:k=-6

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】不透明的袋子中装有4个相同的小球,它们除颜色外无其它差别,把它们分别标号:1、2、3、4

(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画树状图的方法求出“两次取的球标号相同”的概率

(2)随机摸出两个小球,直接写出“两次取出的球标号和等于4”的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCO的顶点BC在第二象限,点A(30),反比例函数y(k0)图象经过点CAB边的中点D,若∠Bα,则k的值为(  )

A. 4tanαB. 2sinαC. 4cosαD. 2tan

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平行四边形ABCD中,∠C和∠D的平分线交于MDM的延长线交ADE,试猜想:

1CMDE的位置关系?

2MDE的什么位置上?并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国家规定中小学生每天在校体育活动时间不低于1小时.为此,某市就你每天在校体育活动时间是多少的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:

A组:B组:

C组:D组:

请根据上述信息解答下列问题:

(1)C组的人数是

(2)本次调查数据的中位数落在组内;

(3)若该辖区约有24 000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司销售部有营业员16人,销售部为了制定某种商品的月销售定额,统计了这16人某月的销售量如下:

每人销售件数

10

11

12

13

14

15

人数

1

3

4

3

3

2

1)这16位销售员该月销售量的众数是_____,中位数是_____,平均数是_____.

2)若要使75%的营业员都能完成任务,应选什么统计量(平均数、中位数和众数)作为月销售件数的定额?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(10),以O1为圆心,O1O为半径画半圆,交直线l于点P1,交x轴正半轴于点O2,由弦P1O2围成的弓形面积记为S1,以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,由弦P2O3和围成的弓形面积记为S2,以O3为圆心,O3O为半径画圆,交直线l于点P3,交x轴正半轴于点O4,由弦P3O4围成的弓形面积记为S3按此做法进行下去,其中S2018的面积为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图1,等边ABC内接于⊙O,点P是⌒AB上的任意一点,连结PAPBPC.点DPC上一点,连结DB

(1) PD=PB,求∠PBD的度数;

(2)(1)的条件下,小丽探究的值,她认为只要弄清PA+PBPC的关系即可,她的思路可以用以下框图表示:

根据小丽的思路,请你完整地书写本题的探究过程,并求出的值.

(3)如图2,把条件等边ABC”改为正方形ABCD”,其余条件不变,判断是定值吗?若是,请求出这个值;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:已知正方形的边长为a,将此正方形按照下面的方法进行剪拼:第一次,先沿正方形的对边中点连线剪开,然后对接为一个长方形,则此长方形的周长为___;第二次,再沿长方形的对边(长方形的宽)中点连线剪开,对接为新的长方形,如此继续下去,第n次得到的长方形的周长为__

查看答案和解析>>

同步练习册答案