精英家教网 > 初中数学 > 题目详情

【题目】如图,ABCO的顶点BC在第二象限,点A(30),反比例函数y(k0)图象经过点CAB边的中点D,若∠Bα,则k的值为(  )

A. 4tanαB. 2sinαC. 4cosαD. 2tan

【答案】A

【解析】

过点CCEOAE,过点DDFx轴于F,根据平行四边形的对边相等可得OCAB,然后求出OC2AD,再求出OE2AF,设AFa,表示出点CD的坐标,然后根据CEDF的关系列方程求出a的值,再求出OECE,然后利用∠COA的正切值列式整理即可得解.

如图,过点CCEOAE,过点DDFx轴于F

OABC中,OCAB

D为边AB的中点,

OCAB2ADCE2DF

OE2AF

AFa,∵点CD都在反比例函数上,

∴点C(﹣2a,﹣),

A30),

D(﹣a3),

-2×

解得a1

OE2CE=﹣

∵∠COA=∠α

tanCOAtanα

tanα=﹣

k=﹣4tanα

故选A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在每个小正方形的边长为1的网格中,点ABC均在格点上。

IAB的长度等于     

II)请你在图中找到一个点P,使得AB是∠PAC的角平分线请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线AC的表达式为yx8,点P从点A开始沿AO向点O1个单位/s的速度移动,点Q从点O开始沿OC向点C2个单位/s的速度移动.如果PQ两点分别从点AO同时出发,经过几秒能使PQO的面积为8个平方单位?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图①,②是晓东同学在进行居民楼高度、楼间距对住户采光影响问题的研究时画的两个示意图.请你阅读相关文字,解答下面的问题.

1)图①是太阳光线与地面所成角度的示意图.冬至日正午时刻,太阳光线直射在南回归线(南纬23.5B地上.在地处北纬36.5A地,太阳光线与地面水平线l所成的角为,试借助图①,求的度数.

2)图②是乙楼高度、楼间距对甲楼采光影响的示意图.甲楼地处A地,其二层住户的南面窗户下沿距地面3.4.现要在甲楼正南面建一幢高度为22.3米的乙楼,为不影响甲楼二层住户(一层为车库)的采光,两楼之间的距离至少应为多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对非负实数x“四舍五入到个位的值记为[x].即当n为非负整数时,若n≤xn+,则[x]n.如:[2.9]3[2.4]2……根据以上材料,解决下列问题:

1)填空[1.8]   []   

2)若[2x+1]4,则x的取值范围是   

3)求满足[x]x1的所有非负实数x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一张矩形纸片ABCD

如图1,点E在这张矩形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN分别在边ADBC,利用直尺和圆规画出折痕不写作法,保留作图痕迹

如图2,点K在这张矩形纸片的边AD上,,将纸片折叠,使AB落在CK所在直线上,折痕为HI,点AB分别落在点处,小明认为所在直线恰好经过点D,他的判断是否正确,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】校园安全受到全社会的广泛关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:

(1)接受问卷调查的学生共有_______人,扇形统计图中基本了解部分所对应扇形的圆心角为_______°;

(2)请补全条形统计图;

(3)若该中学共有学生1800人,请根据上述调查结果,估计该中学学生中对校园安全知识 达到了解基本了解程度的总人数;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角坐标系中,A是反比例函数yx0)图象上一点,By轴正半轴上一点,以OAAB为邻边作ABCO.若点CBC中点D都在反比例函数yk0x0)图象上,则k的值为(  )

A. 3B. 4C. 6D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】宜居襄阳是我们的共同愿景,空气质量备受人们关注.我市某空气质量监测站点检测了该区域每天的空气质量情况,统计了20131月份至4月份若干天的空气质量情况,并绘制了如下两幅不完整的统计图.

请根据图中信息,解答下列问题:

1)统计图共统计了   天的空气质量情况;

2)请将条形统计图补充完整;空气质量为所在扇形的圆心角度数是   

3)从小源所在环保兴趣小组4名同学(2名男同学,2名女同学)中,随机选取两名同学去该空气质量监测站点参观,则恰好选到一名男同学和一名女同学的概率是   

查看答案和解析>>

同步练习册答案