精英家教网 > 初中数学 > 题目详情
16.下列计算正确的是(  )
A.$\sqrt{3}$+$\sqrt{2}$=$\sqrt{5}$B.$\sqrt{12}$÷$\sqrt{3}$=2C.$\sqrt{6}$×(-$\sqrt{3}$)=3$\sqrt{2}$D.($\sqrt{3}$-1)2=2

分析 根据二次根式的加减法对A进行判断;根据二次根式的除法法则对B进行判断;根据二次根式的乘法法则对C进行判断;根据完全平方公式对D进行判断.

解答 解:A、$\sqrt{3}$与$\sqrt{2}$不能合并,所以A选项错误;
B、原式=$\sqrt{12÷3}$=2,所以B选项正确;
C、原式=-$\sqrt{6×3}$=-3$\sqrt{2}$,所以C选项错误;
D、原式=3-2$\sqrt{3}$+1=4-2$\sqrt{3}$,所以D选项错误.
故选B.

点评 本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.如图,在矩形ABCD中,AB=6,BC=8,点P从点B出发以每秒2个单位长度的速度向终点C运动,点P不与点B重合,以BP为边在BC上方作正方形BPEF,设正方形BPEF与△ABC的重叠部分图形的面积为S(平方单位),点P的运动时间为t(秒).
(1)用含t的代数式表示线段PC的长;
(2)当点E落在线段AC上时,求t的值;
(3)在点P运动的过程中,求S与t之间的函数关系式;
(4)设边BC的中点为O,点C关于点P的对称点为C′,以OC′为边在BC上方作正方形OC′MN,当正方形OC′MN与△ACD重叠部分图形为三角形时,直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.若$\sqrt{{k}^{2}}$=-k,则k在数轴上原点的左侧(k≠0).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.已知$\left\{{\begin{array}{l}{x=2}\\{y=1}\end{array}}\right.$是方程组$\left\{{\begin{array}{l}{ax+by=5}\\{bx+ay=1}\end{array}}\right.$的解,则a-b的值是4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.探索:在图1至图3中,已知△ABC的面积为a,

(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA.若△ACD的面积为S1,则S1=a(用含a的代数式表示)
(2)如图2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE.若△DEC的面积为S2,则S2=2a(用含a的代数式表示)
(3)在图2的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF(如图3).若阴影部分的面积为S3,则S3=6a(用含a的代数式表示).
发现:像上面那样,将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF(如图3),此时,我们称△ABC向外扩展了一次.可以发现,扩展一次后得到的△DEF的面积是原来△ABC面积的7倍.
应用:要在一块足够大的空地上栽种花卉,工程人员进行了如下的图案设计:首先在△ABC的空地上种红花,然后将△ABC向外扩展三次(图4已给出了前两次扩展的图案).在第一次扩展区域内种黄花,第二次扩展区域内种紫花,第三次扩展区域内种蓝花.如果种红花的区域(即△ABC)的面积是10平方米,请你运用上述结论求出:
(1)种紫花的区域的面积;
(2)种蓝花的区域的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.人一根头发的直径大约为0.000072米,用科学记数法表示正确的是(  )
A.-7.2×105B.-7.2×104C.7.2×10-4D.7.2×10-5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知:a-b=$\frac{1}{5}$,a2+b2=2$\frac{1}{25}$,求(ab)2016的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.先化简,再求值:($\frac{x+2}{{x}^{2}-2x}$-$\frac{x-1}{{x}^{2}-4x+4}$)÷$\frac{{x}^{2}-16}{{x}^{2}+4x}$,并选一个你喜欢的x的值代入求值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,点P沿半圆弧AB从A向B匀速运动,若运动时间为t,扇形OAP的面积为s,则s与t的函数图象大致是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案