【题目】如图,四边形与不平行,.为四边形的对角线,分别是的中点下列结论:①;②四边形是矩形;③平分④;⑤四边形是菱形.其中正确的个数是 ( )
A.个B.个C.个D.个
【答案】C
【解析】
先根据三角形中位线定理,得出EF=FG=GH=HE,进而得到四边形EFGH是菱形,据此可判断结论是否正确,最后取AB的中点P,连接PE,PG,根据三角形三边关系以及三角形中位线定理,即可得出.
解:∵E,F分别是BD,BC的中点,
∴EF是△BCD的中位线,
∴EF=CD,
同理可得,GH=CD,FG=AB,EH=AB,
又∵AB=CD,
∴EF=FG=GH=HE,
∴四边形EFGH是菱形,故⑤正确,②错误,
∴EG⊥FH,HF平分∠EHG,故①、③正确,
如图所示,取AB的中点P,连接PE,PG,
∵E是BD的中点,G是AC的中点,
∴PE是△ABD的中位线,PG是△ABC的中位线,
∴PE=AD,PG=BC,PE∥AD,PG∥BC,
∵AD与BC不平行,
∴PE与PG不平行,
∴△PEG中,EG>PGPE,
∴EG>BCAD,
即EG>(BCAD),故④错误.
综上所述,正确的有①③⑤.
故选:C.
科目:初中数学 来源: 题型:
【题目】课堂上,数学老师提出了如下问题:
如图1,若线段AD为△ABC的角平分线,请问一定成立吗?
小明和小芳分别作了如下探究:
小明发现:如图2,当△ABC为直角三角形时,且∠C=90°,∠CAB=60°时,结论成立;
小芳发现:如图3,当△ABC为任意三角形时,过点C作AB的平行线,交AD的延长线于点E,利用此图可以证明成立.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①是一个直角三角形纸片,∠C=90°,AB=13cm,BC=5cm,将其折叠,使点C落在斜边上的点C′处,折痕为BD(如图②),求DC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.已知∠ACB=30°,AB=1,
(1)求证:△A1AD1≌△CC1B;
(2)当CC1=1时,求证:四边形ABC1D1是菱形。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角三角形中,,平分交于点,平分交于点,、相交于点,过点作,过点作交于点.下列结论:①;②;③平分;④.其中正确的个数是( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,的平分线与外角的平分线所在的直线交于点.
(1)如图1,若,求的度数;
(2)如图2,把沿翻折,点落在处.
①当时,求的度数;②试确定与的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,过点的直线为边上一点,过点作,交直线于垂足为,连接.
(1)求证:;
(2)当为中点时,四边形是什么特殊四边形?说明你的理由;
(3)若为中点,则当的大小满足什么条件时,四边形是正方形?请说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时点Q从点B出发沿BC边向点C以每秒2cm的速度移动P、Q两点在分别到达B、C两点后就停止移动,设两点移动的时间为t秒,回答下列问题:
(1)如图1,当t为几秒时,△PBQ的面积等于5cm2?
(2)如图2,当t=秒时,试判断△DPQ的形状,并说明理由;
(3)如图3,以Q为圆心,PQ为半径作⊙Q.
①在运动过程中,是否存在这样的t值,使⊙Q正好与四边形DPQC的一边(或边所在的直线)相切?若存在,求出t值;若不存在,请说明理由;
②若⊙Q与四边形DPQC有三个公共点,请直接写出t的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com