【题目】如图1,直线y= x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y= x2+bx+c经过点B,点C的横坐标为4.
(1)请直接写出抛物线的解析式;
(2)如图2,点D在抛物线上,DE∥y轴交直线AB于点E,且四边形DFEG为矩形,设点D的横坐标为x(0<x<4),矩形DFEG的周长为l,求l与x的函数关系式以及l的最大值;
(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1 , 点A、O、B的对应点分别是点A1、O1、B1 . 若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.
【答案】
(1)
解:∵直线l:y= x+m经过点B(0,﹣1),
∴m=﹣1,
∴直线l的解析式为y= x﹣1,
∵直线l:y= x﹣1经过点C,且点C的横坐标为4,
∴y= ×4﹣1=2,
∵抛物线y= x2+bx+c经过点C(4,2)和点B(0,﹣1),
∴ ,
解得 ,
∴抛物线的解析式为y= x2﹣ x﹣1;
(2)
解:令y=0,则 x﹣1=0,
解得:x= ,
∴点A的坐标为( ,0),
∴OA= ,
在Rt△OAB中,OB=1,
∴AB= = = ,
∵DE∥y轴,
∴∠ABO=∠DEF,
在矩形DFEG中,EF=DEcos∠DEF=DE = DE,
DF=DEsin∠DEF=DE = DE,
∴l=2(DF+EF)=2( + )DE= DE,
∵点D的横坐标为t(0<t<4),
∴D(t, t2﹣ t﹣1),E(t, t﹣1),
∴DE=( t﹣1)﹣( t2﹣ t﹣1)=﹣ t2+2t,
∴l= ×(﹣ t2+2t)=﹣ t2+ t,
∵l=﹣ (t﹣2)2+ ,且﹣ <0,
∴当t=2时,l有最大值 .
(3)
解:“落点”的个数有4个,如图1,图2,图3,图4所示.
如图3中,设A1的横坐标为m,则O1的横坐标为m+ ,
∴ m2﹣ m﹣1= (m+ )2﹣ (m+ )﹣1,
解得:m= ,
如图4中,设A1的横坐标为m,则B1的横坐标为m+ ,B1的纵坐标比例A1的纵坐标大1,
∴ m2﹣ m﹣1+1= (m+ )2﹣ (m+ )﹣1,
解得:m= ,
∴旋转180°时点A1的横坐标为 或 .
【解析】(1)把点B的坐标代入直线解析式求出m的值,再把点C的坐标代入直线求解即可得到C点纵坐标,然后利用待定系数法求二次函数解析式解答;(2)令y=0求出点A的坐标,从而得到OA、OB的长度,利用勾股定理列式求出AB的长,然后根据两直线平行,内错角相等可得∠ABO=∠DEF,再解直角三角形用DE表示出EF、DF,根据矩形的周长公式表示出l,利用直线和抛物线的解析式表示DE的长,整理即可得到l与t的关系式,再利用二次函数的最值问题解答;(3)根据逆时针旋转角为90°可得A1O1∥y轴时,B1O1∥x轴,旋转角是180°判断出A1O1∥x轴时,B1A1∥AB,根据图3、图4两种情形即可解决.
【考点精析】本题主要考查了二次函数的最值和勾股定理的概念的相关知识点,需要掌握如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,反比例函数y= 的图象与一次函数y=ax+b的图象交于点A(﹣2,3)和点B(m,﹣2).
(1)求反比例函数和一次函数的解析式;
(2)直线x=1上有一点P,反比例函数图象上有一点Q,若以A、B、P、Q为顶点的四边形是以AB为边的平行四边形,直接写出点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边△ABC中,点D,E分别在边BC,AC上,且BD=CE,AD,BE相交于点F.
(1)求证:AD=BE;
(2)求∠AFE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的袋子里装有两个红球和两个黄球,它们除颜色外都相同,随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到黄球的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,以AB为直径的⊙O分别交AC,BC于点D,E.连接ED,若ED=EC.
(1)求证:AB=AC;
(2)填空:①若AB=6,CD=4,则BC=;
②连接OD,当∠A的度数为时,四边形ODEB是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将顶点为P(1,﹣2),且过原点的抛物线y的一部分沿x轴翻折并向右平移2个单位长度,得到抛物线y1 , 其顶点为P1 , 然后将抛物线y1沿x轴翻折并向右平移2个单位长度,得到抛物线y2 , 其顶点为P2;…,如此进行下去,直至得到抛物线y2016 , 则点P2016坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,抛物线y=x2+ 与y轴相交于点A,点B与点O关于点A对称
(1)填空:点B的坐标是;
(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;
(3)在(2)的条件下,若点C关于直线BP的对称点C′恰好落在该抛物线的对称轴上,求此时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=ax2+2ax﹣3a(a>0)与x轴交于A,B两点(点A在点B的左侧).
(1)求抛物线的对称轴及线段AB的长;
(2)抛物线的顶点为P,若∠APB=120°,求顶点P的坐标及a的值;
(3)若在抛物线上存在一点N,使得∠ANB=90°,结合图象,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com