精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy中,抛物线y=ax2+2ax﹣3a(a>0)与x轴交于A,B两点(点A在点B的左侧).
(1)求抛物线的对称轴及线段AB的长;
(2)抛物线的顶点为P,若∠APB=120°,求顶点P的坐标及a的值;
(3)若在抛物线上存在一点N,使得∠ANB=90°,结合图象,求a的取值范围.

【答案】
(1)

解:令y=0得:ax2+2ax﹣3a=0,即a(x+3)(x﹣1)=0,解得:x=﹣3或x=1,

∴A(﹣3,0)、B(1,0).

∴抛物线的对称轴为直线x=﹣1,AB=4


(2)

解:如图1所示:

设抛物线的对称轴与x轴交于点H.

∵∠APB=120°,AB=4,PH在对称轴上,

∴AH=2,∠APB=60°.

∴PH=

∴点P的坐标为(﹣1,﹣ ).

将点P的坐标代入得:﹣ =﹣4a,解得a=


(3)

解:如图2所示:以AB为直径作⊙H.

∵当∠ANB=90°,

∴点N在⊙H上.

∵点N在抛物线上,

∴点N为抛物线与⊙H的交点.

∴点P在圆上或点P在圆外.

∴HP≥2.

∵将x=﹣1代入得:y=﹣4a.

∴HP=4a.

∴4a≥2,解得a≥

∴a的取值范围是a≥


【解析】(1)令y=0得:ax2+2ax﹣3a=0,解关于x的方程可求得点A和点B的横坐标,然后可求得AB的长,利用抛物线的对称性可得到抛物线的对称轴方程;(2)如图1所示,利用抛物线的对称性可知:AH=2,∠APB=60°,然后可求得PH= ,从而可的点P的坐标,最后将点P的坐标代入抛物线的解析式可求得a的值;(3)以AB为直径作⊙H,则点N在⊙H上,当点P在⊙H上或点P在⊙H外时,∠ANB=90°,故此HP≥2,接下来,依据HP≥2列不等式求解即可.
【考点精析】本题主要考查了二次函数的性质和抛物线与坐标轴的交点的相关知识点,需要掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小;一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,直线y= x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y= x2+bx+c经过点B,点C的横坐标为4.

(1)请直接写出抛物线的解析式;
(2)如图2,点D在抛物线上,DE∥y轴交直线AB于点E,且四边形DFEG为矩形,设点D的横坐标为x(0<x<4),矩形DFEG的周长为l,求l与x的函数关系式以及l的最大值;

(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1 , 点A、O、B的对应点分别是点A1、O1、B1 . 若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣x﹣2交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c的顶点为A,且经过点B.
(1)求该抛物线的解析式;
(2)若点C(m,﹣ )在抛物线上,求m的值.
(3)根据图象直接写出一次函数值大于二次函数值时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为半圆O的直径,C为 的中点,若AB=2,则图中阴影部分的面积是(
A.
B. +
C.
D. +

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AD//BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.

(1)求证:四边形ABCD是矩形;
(2)若AB=2,求△OEC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的水平距离AB为3米,则秋千摆至最高位置时与最低价位置时的高度之差(即CD)为米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线AB经过⊙O上的点C,且OA=OB,CA=CB,OA交⊙O于点E.
(1)证明:直线AB与⊙O相切;
(2)若AE=a,AB=b,求⊙O的半径;(结果用a,b表示)
(3)过点C作弦CD⊥OA于点H,试探究⊙O的直径与OH、OB之间的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,﹣5).

(1)求此抛物线的解析式;
(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有什么位置关系,并给出证明;
(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,求小桥所在圆的半径.

查看答案和解析>>

同步练习册答案