精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为

【答案】
【解析】解:∵CE=5,△CEF的周长为18, ∴CF+EF=18﹣5=13.
∵F为DE的中点,
∴DF=EF.
∵∠BCD=90°,
∴CF= DE,
∴EF=CF= DE=6.5,
∴DE=2EF=13,
∴CD= = =12.
∵四边形ABCD是正方形,
∴BC=CD=12,O为BD的中点,
∴OF是△BDE的中位线,
∴OF= (BC﹣CE)= (12﹣5)=
故答案为:
先根据直角三角形的性质求出DE的长,再由勾股定理得出CD的长,进而可得出BE的长,由三角形中位线定理即可得出结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为弘扬中华优秀传统文化,今年2月20日举行了襄阳市首届中小学生经典诵读大赛决赛.某中学为了选拔优秀学生参加,广泛开展校级“经典诵读”比赛活动,比赛成绩评定为A,B,C,D,E五个等级,该校七(1)班全体学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题:

(1)该校七(1)班共有名学生;扇形统计图中C等级所对应扇形的圆心角等于度;
(2)补全条形统计图;
(3)若A等级的4名学生中有2名男生2名女生,现从中任意选取2名参加学校培训班,请用列表法或画树状图的方法,求出恰好选到1名男生和1名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线y= x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y= x2+bx+c经过点B,点C的横坐标为4.

(1)请直接写出抛物线的解析式;
(2)如图2,点D在抛物线上,DE∥y轴交直线AB于点E,且四边形DFEG为矩形,设点D的横坐标为x(0<x<4),矩形DFEG的周长为l,求l与x的函数关系式以及l的最大值;

(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1 , 点A、O、B的对应点分别是点A1、O1、B1 . 若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,E是AD上的一点,且AE= AD,对角线AC,BD交于点O,EC交BD于F,BE交AC于G,如果平行四边形ABCD的面积为S,那么,△GEF的面积为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在Rt△ACB中,∠C=90°,AC=3,BC=2,AD为中线.
(1)比较∠BAD和∠DAC的大小.
(2)求sin∠BAD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△ABC的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为ts.

(1)若△AMP的面积为y,写出y与t的函数关系式(写出自变量t的取值范围);
(2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t的值;若不可能,说明理由;
(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣x﹣2交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c的顶点为A,且经过点B.
(1)求该抛物线的解析式;
(2)若点C(m,﹣ )在抛物线上,求m的值.
(3)根据图象直接写出一次函数值大于二次函数值时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为半圆O的直径,C为 的中点,若AB=2,则图中阴影部分的面积是(
A.
B. +
C.
D. +

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,﹣5).

(1)求此抛物线的解析式;
(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有什么位置关系,并给出证明;
(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案