【题目】四边形ABCD内接于⊙O,点E为AD上一点,连接AC,CB,∠B=∠AEC.
(1)如图1,求证:CE=CD;
(2)如图2,若∠B+∠CAE=120°,∠ACD=2∠BAC,求∠BAD的度数;
(3)如图3,在(2)的条件下,延长CE交⊙O于点G,若tan∠BAC= ,EG=2,求AE的长.
【答案】(1)见解析;(2)60°;(3)7.
【解析】试题分析:(1)利用圆的内接四边形定理得到∠CED=∠CDE.
(2) 作CH⊥DE于H, 设∠ECH=α,由(1)CE=CD,用α表示∠CAE,∠BAC,而∠BAD=∠BAC+∠CAE.(3)连接AG,作GN⊥AC,AM⊥EG,先证明∠CAG=∠BAC,设NG=5m,可得AN=11m,利用直角AGM, AEM,勾股定理可以算出m的值并求出AE长.
试题解析:
(1)解:证明:∵四边形ABCD内接于⊙O.
∴∠B+∠D=180°,
∵∠B=∠AEC,
∴∠AEC+∠D=180°,
∵∠AEC+∠CED=180°,
∴∠D=∠CED,
∴CE=CD.
(2)解:作CH⊥DE于H.
设∠ECH=α,由(1)CE=CD,
∴∠ECD=2α,
∵∠B=∠AEC,∠B+∠CAE=120°,
∴∠CAE+∠AEC=120°,
∴∠ACE=180°﹣∠AEC﹣∠ACE=60°,
∴∠CAE=90°﹣∠ACH=90°﹣(60°+α)=30°﹣α,
∠ACD=∠ACH+∠HCD=60°+2α,
∵∠ACD=2∠BAC,
∴∠BAC=30°+α,
∴∠BAD=∠BAC+∠CAE=30°+α+30°﹣α=60°.
(3)解:连接AG,作GN⊥AC,AM⊥EG,
∵∠CED=∠AEG,∠CDE=∠AGE,∠CED=∠CDE,
∴∠AEG=∠AGE,
∴AE=AG,
∴EM=MG=EG=1,
∴∠EAG=∠ECD=2α,
∴∠CAG=∠CAD+∠DAG=30°﹣α+2α=∠BAC,
∵tan∠BAC=,
∴设NG=5m,可得AN=11m,AG==14m,
∵∠ACG=60°,
∴CN=5m,AM=8m,MG==2m=1,
∴m=,
∴CE=CD=CG﹣EG=10m﹣2=3,
∴AE===7.
【题型】解答题
【结束】
27
【题目】二次函数y=(x﹣1)2+k分别与x轴、y轴交于A、B、C三点,点A在点B的左侧,直线y=﹣x+2经过点B,且与y轴交于点D.
(1)如图1,求k的值;
(2)如图2,在第一象限的抛物线上有一动点P,连接AP,过P作PE⊥x轴于点E,过E作EF⊥AP于点F,过点D作平行于x轴的直线分别与直线FE、PE交于点G、H,设点P的横坐标为t,线段GH的长为d,求d与t的函数关系式,并直接写出t的取值范围;
(3)在(2)的条件下,过点G作平行于y轴的直线分别交AP、x轴和抛物线于点M、T和N,tan∠MEA= ,点K为第四象限抛物线上一点,且在对称轴左侧,连接KA,在射线KA上取一点R,连接RM,过点K作KQ⊥AK交PE的延长线于Q,连接AQ、HK,若∠RAE﹣∠RMA=45°,△AKQ与△HKQ的面积相等,求点R的坐标.
【答案】(1)﹣4;(2)d=2t﹣6(t>3);(3)(﹣, ).
【解析】试题分析:(1)利用一次函数求出B点坐标,代入二次函数可求二次函数解析式.
(2) 先证明四边形DOEH为矩形,利用=,代入数值求出d和t的关系.
(3) 先证明GHET为矩形,则,得到t的值,作HW⊥KQ,
证明四边形AKWH是矩形,接着证明△RAM≌△HAN,待定系数法证明直线MR的解析式为y直线AK的解析式,△AKQ与△HKQ的面积相等,求点R的坐标
试题解析:
(1)解:在一次函数y=﹣x+2中,令y=0,得:0=﹣x+2,
解得x=3,
∴B(3,0),
令x=0得y=2,
∴D(0,2),
将B(3,0),代入y=(x﹣1)2+k得:4+k=0,
∴k=﹣4.
(2)解:如答图1所示:
∵PE⊥x轴,EF⊥AP,
∴∠PEA=∠EFA=90°,
∵∠PEF+∠FEA=90°,∠PAE+∠FEA=90°,
∴∠PEF=∠PAE,
∵DH∥x轴 HE⊥x轴,
∴∠HDO=∠DOE=∠PEO=90°,
∴四边形DOEH为矩形,
∴HE=2,
∴=,
∴,
∴d=2t﹣6.(t>3).
(3)解:∵∠TGH=∠GTE=∠TEH=90°,
∴GHET为矩形,
∴GH=d=ET=2t﹣6,
∵tan∠MEB=,
∴,
∴MT=3t﹣9,
∵,/span>
∴,
解得t=4.
∴P(4,5).
∴AT=AE﹣ET=t+1﹣(2t﹣6)=7﹣t=3,
∴M(2,3),
把x=2代入y=x2﹣2x﹣3中,得N(2,﹣3),
∴MT=TN=AT,∠MAT=90°.
∵∠RAE﹣∠RMA=45°,
∴∠RAE﹣45°=∠RMA,
∴∠RAM=∠RMA,
∵S△AKQ=S△HKQ , 作HW⊥KQ,
∴AK∥HW,AK=HW,
∴四边形AKWH是矩形,
∴∠RAH=∠HAK=90°,
∴∠RAM=∠HAN.
∵A(﹣1,0),H(4,2),N(2,﹣3),
∴AH=HN=,
∴∠HAN=∠HNA=∠RAM=∠RMA.
又∵AM=AN,
∴△RAM≌△HAN,
∴AR=AH,
过R作RL⊥x轴,
∴∠RLA=∠AEH=90°,
∵∠RAL+∠HAE=90,∠HAE+∠AHE=90,
∴∠RAL=∠AHE,
∴△ARL≌△AHE,
∴RL=AE=5,AL=HE=3,
由∠RAM﹣∠RMA=45°可知∠RAV=∠RVA,∠RMT=∠HAE,tan∠RMT=tan∠HAE=,
V(,0),
直线MR的解析式为y= x﹣2,直线AK的解析式为y=﹣x﹣,
交点R(﹣, ).
科目:初中数学 来源: 题型:
【题目】如果一个多边形的各边都相等且各角也都相等,那么这样的多边形叫做正多边形,如正三角形就是等边三角形,正四边形就是正方形,如下图,就是一组正多边形,
(1)观察上面每个正多边形中的∠α,填写下表:
正多边形边数 | 3 | 4 | 5 | 6 | …… | n |
∠α的度数 | ______° | _____° | ______° | ______° | …… | _____° |
(2)根据规律,计算正八边形中的∠α的度数.
(3)是否存在正n边形使得∠α=21°?若存在,请求出n的值,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小易同学在数学学习时,遇到这样一个问题:如图,已知点在直线外,请用一把刻度尺(仅用于测量长度和画直线),画出过点且平行于的直线,并简要说明你的画图依据.
小易想到一种作法:
①在直线上任取两点、(两点不重合);
②利用刻度尺连接并延长到,使;
③连接并量出中点;
④作直线.
∴直线即为直线的平行线.
(1)请依据小易同学的作法,补全图形.
(2)证明:∵,
∴为的中点,
又∵为中点,
∴( )
(3)你还有其他画法吗?请画出图形,并简述作法.
作法:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题解决:如图1,中,为边上的中线,则______.
问题探究:
(1)如图2,分别是的中线,与相等吗?
解:中,由问题解决的结论可得,,.
∴
∴
即.
(2)图2中,仿照(1)的方法,试说明.
(3)如图3,,,分别是的中线,则______,______,______.
问题拓展:
(1)如图4,分别为四边形的边的中点,请直接写出阴影部分的面积与四边形的面积之间的数量关系:______.
(2)如图5,分别为四边形的边的中点;请直接写出阴影部分的面积与四边形的面积之间的数量关系:______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解青少年形体情况,现随机抽查了若干名初中学生坐姿、站姿、走姿的好坏情况(如果一个学生有一种以上不良姿势,以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请根据图中所给信息解答下列问题:
(1)求这次被抽查形体测评的学生一共有多少人?
(2)求在被调查的学生中三姿良好的学生人数,并将条形统计图补充完整;
(3)若全市有5万名初中生,那么估计全市初中生中,坐姿和站姿不良的学生共有多少人?
【答案】(1)500名;(2)75名;(3)2.5万
【解析】试题分析:(1)用类型人数除以所占百分比就是总人数.(2)用总人数乘以15%.
(3) 坐姿和站姿不良的学生的学生的百分比乘以总人数.
试题解析:
(1)解:100÷20%=500(名),
答:这次被抽查形体测评的学生一共是500名;
(2)解:三姿良好的学生人数:500×15%=75名,
补全统计图如图所示;
(3)解:5万×(20%+30%)=2.5万,
答:全市初中生中,坐姿和站姿不良的学生有2.5万人.
【题型】解答题
【结束】
24
【题目】如图,矩形ABCD中,P为AD边上一点,沿直线BP将△ABP翻折至△EBP(点A的对应点为点E),PE与CD相交于点O,且OE=OD.
(1)求证:PE=DH;
(2)若AB=10,BC=8,求DP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1) 定义:直角三角形两直角边的平方和等于斜边的平方.如:直角三角形的直角边分别为3、4,则斜边的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接写出BC2=__________________.
(2)应用:已知正方形ABCD的边长为4,点P为AD边上的一点,AP= ,请利用“两点之间线段最短”这一原理,在线段AC上画出一点M,使MP+MD最小,并直接写出最小值的平方为_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.
(1)求证:四边形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.
(1)求饮用水和蔬菜各有多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;
(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;
C.仅家长自己参与; D.家长和学生都未参与.
请根据图中提供的信息,解答下列问题:
(1)在这次抽样调查中,共调查了________名学生;
(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;
(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com