精英家教网 > 初中数学 > 题目详情

【题目】小易同学在数学学习时,遇到这样一个问题:如图,已知点在直线外,请用一把刻度尺(仅用于测量长度和画直线),画出过点且平行于的直线,并简要说明你的画图依据.

小易想到一种作法:

①在直线上任取两点(两点不重合);

②利用刻度尺连接并延长到,使

③连接并量出中点

④作直线.

∴直线即为直线的平行线.

1)请依据小易同学的作法,补全图形.

2)证明:∵

的中点,

又∵中点,

3)你还有其他画法吗?请画出图形,并简述作法.

作法:

【答案】1)见解析;(2)三角形的中位线平行于三角形的第三边;(3)见解析.

【解析】

1)根据已知条件按步骤画图即可;

2)分析可知PD的中位线,然后依据的是三角形中位线定理;

3)可利用全等三角形的性质去画图.

1)图形如下:

2)∵P,D分别是AC,BC的中点,

PD的中位线,

(三角形的中位线平行于三角形的第三边);

3)如图:

作法:(1)在直线上任取两点(两点不重合);

2)连接AP,取AP的中点E

3)连接BE,并延长至点F,使

4)作直线PF,则直线即为直线的平行线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+ca≠0)的图象与x轴交于点AB两点,与y轴交于点C,对称轴为直线x=﹣1,点B的坐标为(10),则下列结论:①AB=4②b2﹣4ac0③ab0④a2﹣ab+ac0,其中正确的结论有(  )个

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y=的图象与一次函数y=kx+b的图象交于AB两点,点A的坐标为(23n),点B的坐标为(5n+21).

(1)求反比例函数与一次函数的表达式;

2)将一次函数y=kx+b的图象沿y轴向下平移a个单位,使平移后的图象与反比例函数y= 的图象有且只有一个交点,求a的值;

(3)点Ey轴上一个动点,若SAEB=5,则点E的坐标为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC三点在同一直线上,∠DAE=∠AEB∠D=∠BEC

1)求证:BD∥CE

2)若∠C=70°∠DAC=50°,求∠DBE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列网格中的六边形是由一个边长为6的正方形剪去左上角一个边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.

1)根据剪拼前后图形的面积关系求出拼成的正方形的边长为___________;

2)如图甲,把六边形沿剪成①,②,③三个部分,请在图甲中画出将②,③与①拼成的正方形,然后标出②,③变动后的位置;

3)在图乙中画出一种与图甲不同位置的两条剪裁线,并画出将此六边形剪拼成的正方形.(通过平移,旋转,翻折与图甲重合的方法不可以)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】AB两组卡片共5张,A组的三张分别写有数字246B组的两张分别写有35.它们除了数字外没有任何区别

1随机从A组抽取一张,求抽到数字为2的概率;

2随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某小区实施供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中,正确的个数有( )个.

甲队每天挖100米;

乙队开挖两天后,每天挖50米;

x=4时,甲、乙两队所挖管道长度相同;

甲队比乙队提前2天完成任务.

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】甲队每天挖=100米,正确.

乙队开挖两天后,每天挖; 米,正确.

x=4时,甲、乙两队交点在x=4处,所以挖管道长度相同.正确.

知,甲挖完的时候,乙还有100米,1002. 甲队比乙队提前2天完成任务.正确.

故选D.

型】单选题
束】
11

【题目】103 000用科学记数法表示为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD内接于⊙O,点EAD上一点,连接AC,CB,B=AEC.

(1)如图1,求证:CE=CD;

(2)如图2,若∠B+CAE=120°,ACD=2BAC,求∠BAD的度数;

3)如图3,在(2)的条件下,延长CE交⊙O于点G,若tanBAC= EG=2,求AE的长.

【答案】(1)见解析;(2)60°;(3)7.

【解析】试题分析:(1)利用圆的内接四边形定理得到∠CED=∠CDE.

(2) CHDEH, ECH=α,由(1CE=CDα表示CAEBACBAD=BAC+CAE.3连接AG,作GNACAMEG先证明CAG=BACNG=5m,可得AN=11m利用直角AGM, AEM勾股定理可以算出m的值并求出AE.

试题解析:

1)解:证明:四边形ABCD内接于O.

∴∠B+∠D=180°

∵∠B=∠AEC

∴∠AEC+∠D=180°

∵∠AEC+∠CED=180°

∴∠D=CED

CE=CD

2)解:作CHDEH

ECH=α,由(1CE=CD

∴∠ECD=2α

∵∠B=∠AECB+∠CAE=120°

∴∠CAE+∠AEC=120°

∴∠ACE=180°﹣∠AEC﹣∠ACE=60°

∴∠CAE=90°﹣∠ACH=90°﹣60°+α=30°﹣α

ACD=∠ACH+∠HCD=60°+2α

∵∠ACD=2∠BAC

∴∠BAC=30°+α

∴∠BAD=∠BAC+∠CAE=30°+α+30°﹣α=60°

3)解:连接AG,作GNACAMEG

∵∠CED=∠AEGCDE=∠AGECED=∠CDE

∴∠AEG=∠AGE

AE=AG

EM=MG=EG=1

∴∠EAG=∠ECD=2α

∴∠CAG=∠CAD+∠DAG=30°﹣α+2α=∠BAC

tanBAC=

NG=5m,可得AN=11mAG==14m

∵∠ACG=60°

CN=5mAM=8mMG==2m=1

m=

CE=CD=CG﹣EG=10m﹣2=3

AE===7

型】解答
束】
27

【题目】二次函数y=x12+k分别与x轴、y轴交于ABC三点,点A在点B的左侧,直线y=x+2经过点B,且与y轴交于点D

(1)如图1,求k的值;

(2)如图2,在第一象限的抛物线上有一动点P,连接AP,过PPEx轴于点E,过EEFAP于点F,过点D作平行于x轴的直线分别与直线FE、PE交于点G、H,设点P的横坐标为t,线段GH的长为d,求dt的函数关系式,并直接写出t的取值范围;

3)在(2)的条件下,过点G作平行于y轴的直线分别交APx轴和抛物线于点MTNtanMEA= ,点K为第四象限抛物线上一点,且在对称轴左侧,连接KA,在射线KA上取一点R,连接RM,过点KKQAKPE的延长线于Q,连接AQHK,若∠RAERMA=45°AKQ与△HKQ的面积相等,求点R的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对非负实数x“四含五入到个位的值记为,即当n为非负整数时,若n-≤x<n+,则=n.如:……根据以上材料,解决下列问题:

(1)填空= =

2)若,则x的取值范围是

(3)求满足的所有实数x的值.

查看答案和解析>>

同步练习册答案