精英家教网 > 初中数学 > 题目详情

【题目】如图,二次函数y=ax2+bx+ca≠0)的图象与x轴交于点AB两点,与y轴交于点C,对称轴为直线x=﹣1,点B的坐标为(10),则下列结论:①AB=4②b2﹣4ac0③ab0④a2﹣ab+ac0,其中正确的结论有(  )个

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】试题解析:∵抛物线的对称轴为直线x=-1,点B的坐标为(10),

A-30),

AB=1--3=4,所以①正确;

∵抛物线与x轴有2个交点,

∴△=b2-4ac0,所以②正确;

∵抛物线开口向下,

a0

∵抛物线的对称轴为直线x=-=-1

b=2a0

ab0,所以③错误;

x=-1时,y0

a-b+c0

a0

aa-b+c)<0,所以④正确.

故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某电器超市销售每台进价分别为200,170元的A,B两种型号的电风扇表中是近两周的销售情况:

销售时段

销售数量

销售收入

A种型号

B种型号

第一周

3

5

1800

第二周

4

10

3100

(进价、售价均保持不变利润=销售收入-进货成本)

(1)A,B两种型号的电风扇的销售单价.

(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30A种型号的电风扇最多能采购多少台?

(3)(2)的条件下超市销售完这30台电风扇能否实现利润为1400元的目标?若能请给出相应的采购方案;若不能请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点AB在反比例函数y(x0)的图象上,点CD在反比例函数y(k0)的图象上,ACBDy轴,已知点AB的横坐标分别为12,△OAC与△ABD的面积之和为,则k的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=ACAD△ABC的角平分线,点OAB的中点,连接DO并延长到点E,使OE=OD,连接AEBE

1)求证:四边形AEBD是矩形;

2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,过点O作弦AD的垂线交切线AC于点COC与圆O交于点E,连结BEDE

1若圆的半径是3EBA30度,求AD的长度.

2)求证:∠BED=C

3)若OA=5AD=8,求切线AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2开始,连续的偶数相加,它们和的情况如下表:

加数的个数n

S

1

2=1×2

2

24=6=2×3

3

246=12=3×4

4

2468=20=4×5

5

246810=30=5×6

1)若n=8时,则S的值为_____________

2)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+…+2n=__________________

3)根据上题的规律计算2+4+6+8+10+…+98+100的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系 中,长方形 的四个顶点分别为 .对该长方形及其内部的每一个点都进行如下操作:把每个点的横坐标都乘以同一个实数 ,纵坐标都乘以3,再将得到的点向右平移 同一个实数,纵坐标都乘以3,再将得到的点向右平移 个单位,向下平移2个单位,得到长方形 及其内部的点,其中点 的对应点分别为部的点.

1)点的横坐标为(用含的式子表示);

2)点的坐标为 ,点的坐标为

①求的值;

②若对长方形内部(不包括边界)的点 进行上述操作后,得到的对应点 仍然在长方形内部(不包括边界),求少的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果一个多边形的各边都相等且各角也都相等,那么这样的多边形叫做正多边形,如正三角形就是等边三角形,正四边形就是正方形,如下图,就是一组正多边形,

(1)观察上面每个正多边形中的∠α,填写下表:

正多边形边数

3

4

5

6

……

n

α的度数

______°

_____°

______°

______°

……

_____°

(2)根据规律,计算正八边形中的∠α的度数.

(3)是否存在正n边形使得∠α=21°?若存在,请求出n的值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小易同学在数学学习时,遇到这样一个问题:如图,已知点在直线外,请用一把刻度尺(仅用于测量长度和画直线),画出过点且平行于的直线,并简要说明你的画图依据.

小易想到一种作法:

①在直线上任取两点(两点不重合);

②利用刻度尺连接并延长到,使

③连接并量出中点

④作直线.

∴直线即为直线的平行线.

1)请依据小易同学的作法,补全图形.

2)证明:∵

的中点,

又∵中点,

3)你还有其他画法吗?请画出图形,并简述作法.

作法:

查看答案和解析>>

同步练习册答案