【题目】问题解决:如图1,中,为边上的中线,则______.
问题探究:
(1)如图2,分别是的中线,与相等吗?
解:中,由问题解决的结论可得,,.
∴
∴
即.
(2)图2中,仿照(1)的方法,试说明.
(3)如图3,,,分别是的中线,则______,______,______.
问题拓展:
(1)如图4,分别为四边形的边的中点,请直接写出阴影部分的面积与四边形的面积之间的数量关系:______.
(2)如图5,分别为四边形的边的中点;请直接写出阴影部分的面积与四边形的面积之间的数量关系:______.
【答案】问题解决:(1)(2)见解析;(3),,;
问题拓展:(1);(2);
【解析】
问题解决:(1)根据中线平方面积即可求解;
(2)根据,分别减去△BOC的面积即可求解;
(3)根据中线的性质得到各小三角形的面积都相等,即可求解;
问题拓展:(1)连接BD,根据问题解决(1)的结论即可求解;
(2)连接BD,根据问题解决(2)的结论即可求解.
问题解决:(1)∵中,为边上的中线,
∴.
(2)解:中,由问题解决的结论可得,,.
∴
∴
即.
(3)∵,,分别是的中线,
由(2)可得
∴,,.
问题拓展:(1)如图,连接BD,由问题解决(1)的结论得,,
∴
(2)如图连接BD,根据问题解决(2)的结论得
,,
∴
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(-2,-2).
(1)请在图中作出△ABC关于y轴的轴对称图形△DEF(A、B、C的对应点分别是D、E、F),并直写出D、E、F的坐标.
(2)求四边形ABED的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知A,B,C三点在同一直线上,∠DAE=∠AEB,∠D=∠BEC,
(1)求证:BD∥CE;
(2)若∠C=70°,∠DAC=50°,求∠DBE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有A、B两组卡片共5张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,5.它们除了数字外没有任何区别,
(1)随机从A组抽取一张,求抽到数字为2的概率;
(2)随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某小区实施供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中,正确的个数有( )个.
①甲队每天挖100米;
②乙队开挖两天后,每天挖50米;
③当x=4时,甲、乙两队所挖管道长度相同;
④甲队比乙队提前2天完成任务.
A. 1 B. 2 C. 3 D. 4
【答案】D
【解析】①甲队每天挖=100米,正确.
②乙队开挖两天后,每天挖; 米,正确.
③当x=4时,甲、乙两队交点在x=4处,所以挖管道长度相同.正确.
④由②知,甲挖完的时候,乙还有100米,1002. 甲队比乙队提前2天完成任务.正确.
故选D.
【题型】单选题
【结束】
11
【题目】103 000用科学记数法表示为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠B=30°,D为BC上一点,且∠DAB=45°.
(1) 求∠DAC的度数.
(2) 求证:△ACD是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD内接于⊙O,点E为AD上一点,连接AC,CB,∠B=∠AEC.
(1)如图1,求证:CE=CD;
(2)如图2,若∠B+∠CAE=120°,∠ACD=2∠BAC,求∠BAD的度数;
(3)如图3,在(2)的条件下,延长CE交⊙O于点G,若tan∠BAC= ,EG=2,求AE的长.
【答案】(1)见解析;(2)60°;(3)7.
【解析】试题分析:(1)利用圆的内接四边形定理得到∠CED=∠CDE.
(2) 作CH⊥DE于H, 设∠ECH=α,由(1)CE=CD,用α表示∠CAE,∠BAC,而∠BAD=∠BAC+∠CAE.(3)连接AG,作GN⊥AC,AM⊥EG,先证明∠CAG=∠BAC,设NG=5m,可得AN=11m,利用直角AGM, AEM,勾股定理可以算出m的值并求出AE长.
试题解析:
(1)解:证明:∵四边形ABCD内接于⊙O.
∴∠B+∠D=180°,
∵∠B=∠AEC,
∴∠AEC+∠D=180°,
∵∠AEC+∠CED=180°,
∴∠D=∠CED,
∴CE=CD.
(2)解:作CH⊥DE于H.
设∠ECH=α,由(1)CE=CD,
∴∠ECD=2α,
∵∠B=∠AEC,∠B+∠CAE=120°,
∴∠CAE+∠AEC=120°,
∴∠ACE=180°﹣∠AEC﹣∠ACE=60°,
∴∠CAE=90°﹣∠ACH=90°﹣(60°+α)=30°﹣α,
∠ACD=∠ACH+∠HCD=60°+2α,
∵∠ACD=2∠BAC,
∴∠BAC=30°+α,
∴∠BAD=∠BAC+∠CAE=30°+α+30°﹣α=60°.
(3)解:连接AG,作GN⊥AC,AM⊥EG,
∵∠CED=∠AEG,∠CDE=∠AGE,∠CED=∠CDE,
∴∠AEG=∠AGE,
∴AE=AG,
∴EM=MG=EG=1,
∴∠EAG=∠ECD=2α,
∴∠CAG=∠CAD+∠DAG=30°﹣α+2α=∠BAC,
∵tan∠BAC=,
∴设NG=5m,可得AN=11m,AG==14m,
∵∠ACG=60°,
∴CN=5m,AM=8m,MG==2m=1,
∴m=,
∴CE=CD=CG﹣EG=10m﹣2=3,
∴AE===7.
【题型】解答题
【结束】
27
【题目】二次函数y=(x﹣1)2+k分别与x轴、y轴交于A、B、C三点,点A在点B的左侧,直线y=﹣x+2经过点B,且与y轴交于点D.
(1)如图1,求k的值;
(2)如图2,在第一象限的抛物线上有一动点P,连接AP,过P作PE⊥x轴于点E,过E作EF⊥AP于点F,过点D作平行于x轴的直线分别与直线FE、PE交于点G、H,设点P的横坐标为t,线段GH的长为d,求d与t的函数关系式,并直接写出t的取值范围;
(3)在(2)的条件下,过点G作平行于y轴的直线分别交AP、x轴和抛物线于点M、T和N,tan∠MEA= ,点K为第四象限抛物线上一点,且在对称轴左侧,连接KA,在射线KA上取一点R,连接RM,过点K作KQ⊥AK交PE的延长线于Q,连接AQ、HK,若∠RAE﹣∠RMA=45°,△AKQ与△HKQ的面积相等,求点R的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且经A(1,0)、
B(0,﹣3)两点.(1)求抛物线的解析式;
(2)在抛物线的对称轴x=﹣1上,是否存在点M,使它到点A的距离与到点B的距离之和最小,如果存在求出点M的坐标,如果不存在请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为了解九年级学生的身体素质情况,随机抽查了九年级部分学生一分钟跳绳次数,绘制成如下统计图表(图1,图2,表).
等级 | 一分钟跳绳次数x | 人数 |
A | x>180 | 12 |
B | 150<x≤180 | 14 |
C | 120<x≤150 | a |
D | x≤120 | b |
请结合图表完成下列问题:
(1)表1中a= ,b= ;
(2)请把图1和图2补充完整;
(3)已知该校有1000名九年级学生,若在一分钟内跳绳次数不大于120次的为不合格,则该校九年级学生一分钟跳绳不合格的学生估计为 人.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com