精英家教网 > 初中数学 > 题目详情

【题目】如图,⊙O的两条弦AB、CD交于点E,OE平分∠BED.

(1)求证:AB=CD;

(2)若∠BED=60°,EO=2,求DE﹣AE的值.

【答案】1)证明见解析;(2

【解析】试题(1)过点O作AB、CD的垂线,垂足为M、N,由角平分线的性质,可得OM=ON,然后由弦心距相等可得弦相等,即AB=CD;

(2)由(1)可得,OM=ON,AB=CD,OMAB,ONCD,由垂径定理可得DN=CN=AM=BM,由HL可证RtEONRtEOM,继而可得NE=ME,

从而得AE=CE, DE-AE=DE-CE=DN+NE-CE=CN+NE-CE=2NE,在RtEON中,由NEO=30°,OE=2,即可求出NE.

试题解析:(1)过点OABCD的垂线,垂足为MN,如图1,

OE平分BED,且OMABONCDOM=ONAB=CD

(2)如图2所示,由(1)知,OM=ONAB=CDOMABONCDDN=CN=AM=BM,在RtEONRtEOM中,RtEONRtEOM(HL),NE=MECDDNNE=ABBMME,即AE=CEDEAE=DECE=DN+NECE=CN+NECE=2NE∵∠BED=60°,OE平分BED∴∠NEO= BED=30°,ON=OE=1,在RtEON中,由勾股定理得:NE==DEAE=2NE=2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】据调查,超速行驶是引发交通事故的主要原因之一.小强用所学知识对一条笔直公路上的车辆进行测速,如图所示,观测点C到公路的距离CD=200m,检测路段的起点A位于点C的南偏东60°方向上,终点B位于点C的南偏东45°方向上.一辆轿车由东向西匀速行驶,测得此车由A处行驶到B处的时间为10s.问此车是否超过了该路段16m/s的限制速度?(观测点C离地面的距离忽略不计,参考数据:≈1.41,≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:

(Ⅰ)图①中的值为

(Ⅱ)求统计的这组数据的平均数、众数和中位数;

(Ⅲ) 根据样本数据,估计这2500只鸡中,质量为的约有多少只?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=-x2bxc的图像经过点(03)、(-10).

1求二次函数的表达式

2)在给定的平面直角坐标系中,画出这个二次函数的图像;

3)根据图像,直接写出当x满足什么条件时,y0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB、CD相交于点O,∠AOC=30°,半径为1cm⊙P的圆心在直线AB上,且与点O的距离为6cm.如果⊙P1cm∕s的速度,沿由AB的方向移动,那么________秒种后⊙P与直线CD相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰△ABC的底边在y轴正半轴上,顶点C在第一象限,延长AC交双曲线y=于D,且CD=AC,延长CB交x轴于E,若△ABE的面积为5,则k=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:关于x的二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.

(1)求二次函数的表达式;

(2)y轴上是否存在一点P,使PBC为等腰三角形.若存在,请求出点P的坐标;

(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 达点B时,点MN同时停止运动,问点MN运动到何处时,MNB面积最大,试求出最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为一圆洞门.工匠在建造过程中需要一根横梁AB和两根对称的立柱CEDF来支撑,点ABCDO上,CEABEDFABF,且AB2EF120°.

(1)求出圆洞门O的半径;

(2)求立柱CE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线分别相切于点和点.点和点分别是上的动点,沿平移.的半径为.下列结论错误的是(

A. B. 的距离为

C. ,则相切 D. 相切,则

查看答案和解析>>

同步练习册答案