| 销售单价x(元/件) | … | 55 | 60 | 70 | 75 | … |
| 一周的销售量y(件) | … | 450 | 400 | 300 | 250 | … |
分析 (1)设y=kx+b,把点的坐标代入解析式,求出k、b的值,即可得出函数解析式;
(2)根据利润=(售价-进价)×销售量,列出函数关系式,继而确定销售利润随着销售单价的增大而增大的销售单价的范围;
(3)根据购进该商品的贷款不超过8000元,求出进货量,然后求最大销售额即可.
解答 解:(1)设y=kx+b,
由题意得,$\left\{\begin{array}{l}{55k+b=450}\\{60k+b=400}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=-10}\\{b=1000}\end{array}\right.$,
则函数关系式为:y=-10x+1000,(x≥50)
(2)由题意得,S=(x-40)y=(x-40)(-10x+1000)
=-10x2+1400x-40000=-10(x-70)2+9000,![]()
∵-10<0,
∴函数图象开口向下,对称轴为直线x=70,
∴当40<x<70时,销售利润随着销售单价的增大而增大;
(3)∵购进该商品的货款不超过8000元,
∴y的最大值为$\frac{8000}{40}$=200(件).
由(1)知y随x的增大而减小,
∴x的最小值为:x=80,
由(2)知 当x≥70时,S随x的增大而减小,
∴当x=80时,销售利润最大,
此时S=8000,即该商家最大捐款数额是8000元.
点评 本题考查了二次函数的应用,难度一般,解答本题的关键是将实际问题转化为求函数最值问题,从而来解决实际问题.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 若AB∥CD,则∠1=∠2 | B. | 若AD∥BC,则∠1=∠2 | ||
| C. | 若∠B=∠D,则AB∥CD | D. | 若∠CAB=∠ACD,则AD∥BC |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\sqrt{\frac{1}{3}}$ | B. | $\sqrt{{a}^{2}}$ | C. | $\sqrt{12}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com