20£®ÔĶÁ²ÄÁÏ£º
¢ÙÖ±ÏßlÍâÒ»µãPµ½Ö±ÏßlµÄ´¹Ï߶εij¤¶È£¬½Ð×öµãPµ½Ö±ÏßlµÄ¾àÀ룬¼Ç×÷d£¨P£¬l£©
¢ÚÁ½ÌõƽÐÐÏßl1£¬l2£¬Ö±ÏßÉÏl1ÈÎÒâÒ»µãµ½Ö±Ïßl2µÄ¾àÀ룬½Ð×öÕâÁ½ÌõƽÐÐÏßl1£¬l2Ö®¼äµÄ¾àÀ룬¼Ç×÷d£¨l1£¬l2£©£»
¢ÛÈôÖ±Ïßl1£¬l2Ïཻ£¬Ôò¶¨Òåd£¨l1£¬l2£©=0
¢Ü¶ÔÓÚͬһÌõÖ±Ïßl£¬ÎÒÃǶ¨Òåd£¨l£¬l£©=0£®
¶ÔÓÚÁ½µãP1£¬P2ºÍÁ½ÌõÖ±Ïßl1£¬l2£¬¶¨ÒåÁ½µãP1£¬P2µÄ¡°l1£¬l2-Ïà¹Ø¾àÀ롱ÈçÏ£ºd£¨P1£¬P2|l1£¬l2£©=d£¨P1£¬l1£©+d£¨l1£¬l2£©+d£¨P2£¬l2£©
ÉèP1£¨4£¬0£©£¬P2£¨0£¬3£©£¬l1£ºy=x£¬l2£ºy=$\sqrt{3}$x£¬l3£ºy=kx£¬l4£ºy=k¡äx£¬½â¾öÒÔÏÂÎÊÌ⣺
£¨1£©d£¨P1£¬P2|l1£¬l1£©=$\frac{7}{2}\sqrt{2}$£¬d£¨P1£¬P2|l1£¬l2£©=2$\sqrt{2}+$$\frac{3}{2}$
£¨2£©¢ÙÈôk£¾0£¬Ôòµ±d£¨P1£¬P2|l3£¬l3£©×î´óʱ£¬k=$\frac{4}{3}$£»
¢ÚÈôk£¼0£¬ÊÔÈ·¶¨kµÄֵʹµÃd£¨P1£¬P2|l3£¬l3£©×î´ó£®
£¨3£©Èôk¡ä£¾k£¾0£¬ÇÒ£¬l3£¬l4µÄ¼Ð½ÇÊÇ30¡ã£¬Ö±½Óд³öd£¨P1£¬P2|l3£¬l4£©µÄ×î´óÖµ$\sqrt{13}$£®

·ÖÎö £¨1£©Ê×ÏÈ·Ö±ðÇó³öd£¨P1£¬l1£©¡¢d£¨l1£¬l1£©¡¢d£¨P2£¬l1£©µÄÖµ¸÷ÊǶàÉÙ£¬ÔÙ°ÑËüÃÇÇóºÍ£¬Çó³öd£¨P1£¬P2|l1£¬l1£©µÄÖµÊǶàÉÙ£»È»ºó·Ö±ðÇó³öd£¨P1£¬l1£©¡¢d£¨l1£¬l2£©¡¢d£¨P2£¬l2£©µÄÖµ¸÷ÊǶàÉÙ£¬ÔÙ°ÑËüÃÇÇóºÍ£¬Çó³öd£¨P1£¬P2|l1£¬l2£©µÄÖµÊǶàÉÙ¼´¿É£®
£¨2£©¢ÙÊ×ÏÈ×÷P1A¡Íl3ÓÚµãA£¬P2B¡Íl3ÓÚµãB£¬Á¬½ÓP1P2½»l3ÓÚµãC£¬È»ºó¸ù¾ÝP1A+P2B¡ÜP1P2£¬¿ÉµÃµ±P1P2¡Íl3ʱ£¬P1A+P2BµÄÖµ×î´ó£¬¾Ý´ËÇó³ökµÄÖµÊǶàÉÙ¼´¿É£®
¢ÚÊ×ÏÈ×÷P1A¡Íl3ÓÚµãA£¬P2B¡Íl3ÓÚµãB£¬P1¡¢P3¹ØÓÚÔ­µã¶Ô³Æ£¬P3C¡Íl3ÓÚµãC£¬P2P3½»l3ÓÚµãD£¬È»ºó¸ù¾ÝP2B+P3C¡ÜP2P3£¬¿ÉµÃµ±P2P3¡Íl3ʱ£¬P2B+P3CÈ¡µ½×î´óÖµ£¬¾Ý´ËÇó³ökµÄÖµÊǶàÉÙ¼´¿É£®
£¨3£©Ê×ÏÈ×÷P1A¡Íl3ÓÚµãA£¬P2B¡Íl4ÓÚµãB£¬È»ºóÇó³öd£¨P1£¬P2|l3£¬l4£©=d£¨P1£¬l3£©+d£¨l3£¬l4£©+d£¨P2£¬l4£©=$\sqrt{13}$sin£¨¦Á+¦Ã£©£¨ÆäÖÐtan¦Ã=$\frac{3\sqrt{3}}{5}$£©£¬¾Ý´ËÅжϳöd£¨P1£¬P2|l3£¬l4£©µÄ×î´óÖµÊǶàÉÙ¼´¿É£®

½â´ð ½â£º£¨1£©¡ßP1£¨4£¬0£©£¬P2£¨0£¬3£©£¬l1£ºy=x£¬l2£ºy=$\sqrt{3}$x£¬
¡àd£¨P1£¬P2|l1£¬l1£©=d£¨P1£¬l1£©+d£¨l1£¬l1£©+d£¨P2£¬l1£©
=$\frac{4}{\sqrt{2}}$+0+$\frac{3}{\sqrt{2}}$
=2$\sqrt{2}+\frac{3}{2}\sqrt{2}$
=$\frac{7}{2}\sqrt{2}$
¡àd£¨P1£¬P2|l1£¬l2£©=d£¨P1£¬l1£©+d£¨l1£¬l2£©+d£¨P2£¬l2£©
=$\frac{4}{\sqrt{2}}$+0+$\frac{|\sqrt{3}¡Á0-1¡Á3|}{\sqrt{{£¨\sqrt{3}£©}^{2}{+£¨-1£©}^{2}}}$
=2$\sqrt{2}+$$\frac{3}{2}$

£¨2£©¢ÙÈçͼ1£¬×÷P1A¡Íl3ÓÚµãA£¬P2B¡Íl3ÓÚµãB£¬Á¬½ÓP1P2½»l3ÓÚµãC£¬
£¬
d£¨P1£¬P2|l3£¬l3£©=d£¨P1£¬l3£©+d£¨l3£¬l3£©+d£¨P2£¬l3£©=P1A+P2B£¬
¡ßP1A¡ÜP1C£¬P2B¡ÜP2C£¬
¡àP1A+P2B¡ÜP1P2£¬
¡àµ±P1P2¡Íl3ʱ£¬
P1A+P2BµÄ×î´óÖµÊÇ£º$\sqrt{{{OP}_{1}}^{2}{+{OP}_{2}}^{2}}=\sqrt{{3}^{2}{+4}^{2}}=5$£¬
´Ëʱk=tan¡ÏOP2P1=$\frac{{OP}_{1}}{{OP}_{2}}$=$\frac{4}{3}$£¬
¡àÈôk£¾0£¬µ±d£¨P1£¬P2|l3£¬l3£©×î´óʱ£¬k=$\frac{4}{3}$£®

¢ÚÈçͼ2£¬×÷P1A¡Íl3ÓÚµãA£¬P2B¡Íl3ÓÚµãB£¬P1¡¢P3¹ØÓÚÔ­µã¶Ô³Æ£¬P3C¡Íl3ÓÚµãC£¬P2P3½»l3ÓÚµãD£¬£¬
¡ßP1¡¢P3¹ØÓÚÔ­µã¶Ô³Æ£¬
¡àP1A=P3C£¬
¡àd£¨P1£¬P2|l3£¬l3£©=d£¨P1£¬l3£©+d£¨l3£¬l3£©+d£¨P2£¬l3£©=P1A+P2B=P2B+P3C£¬
¡ßP2B¡ÜP2D£¬P3C¡ÜP3D£¬
¡àP2B+P3C¡ÜP2P3£¬
¡àµ±P2P3¡Íl3ʱ£¬
P2B+P3CµÄ×î´óÖµÊÇ£º$\sqrt{{{OP}_{3}}^{2}{+{OP}_{2}}^{2}}$=$\sqrt{{4}^{2}{+3}^{2}}$=5£¬
´Ëʱk=-tan¡ÏOP2P3=-$\frac{{OP}_{3}}{{OP}_{2}}$=-$\frac{4}{3}$£¬
¡àÈôk£¼0£¬µ±d£¨P1£¬P2|l3£¬l3£©×î´óʱ£¬k=-$\frac{4}{3}$£®

£¨3£©Èçͼ3£¬×÷P1A¡Íl3ÓÚµãA£¬P2B¡Íl4ÓÚµãB£¬
£¬
Éè¡ÏAOP1=¦Á£¬¡ÏBOP2=¦Â£¬
Ôò¦Â=90¡ã-30¡ã-¦Á=60¡ã-¦Á£¬
¡àd£¨P1£¬P2|l3£¬l4£©=d£¨P1£¬l3£©+d£¨l3£¬l4£©+d£¨P2£¬l4£©
=P1A+P2B
=OP1sin¦Á+OP2sin¦Â
=4sin¦Á+3sin¦Â
=4sin¦Á+3sin£¨60¡ã-¦Á£©
=$\frac{5}{2}$sin¦Á+$\frac{3\sqrt{3}}{2}$cos¦Á
=$\sqrt{13}$sin£¨¦Á+¦Ã£©£¨ÆäÖÐtan¦Ã=$\frac{3\sqrt{3}}{5}$£©
¡àµ±¦Á+¦Ã=90¡ã£¬¼´¦Á=90¡ã-arctan$\frac{3\sqrt{3}}{5}$ʱ£¬
$\sqrt{13}$sin£¨¦Á+¦Ã£©µÄ×î´óÖµÊÇ$\sqrt{13}$£¬
¡àd£¨P1£¬P2|l3£¬l4£©µÄ×î´óÖµÊÇ$\sqrt{13}$£®
¹Ê´ð°¸Îª£º$\frac{7}{2}\sqrt{2}$£¬2$\sqrt{2}+$$\frac{3}{2}$£¬$\frac{4}{3}$£¬$\sqrt{13}$£®

µãÆÀ £¨1£©´ËÌâÖ÷Òª¿¼²éÁËÒ»´Îº¯Êý×ÛºÏÌ⣬¿¼²éÁË·ÖÎöÍÆÀíÄÜÁ¦£¬¿¼²éÁËÊýÐνáºÏ˼ÏëµÄÓ¦Ó㬿¼²éÁË´ÓÒÑÖªº¯ÊýͼÏóÖлñÈ¡ÐÅÏ¢£¬²¢ÄÜÀûÓûñÈ¡µÄÐÅÏ¢½â´ðÏàÓ¦µÄÎÊÌâµÄÄÜÁ¦£¬½â´ð´ËÌâµÄ¹Ø¼üÊÇÀí½âd£¨P1£¬P2|l1£¬l2£©=d£¨P1£¬l1£©+d£¨l1£¬l2£©+d£¨P2£¬l2£©µÄÒâÒåºÍÇ󷨣®
£¨2£©´ËÌ⻹¿¼²éÁËÈý½Çº¯ÊýµÄ×îÖµµÄÇ󷨣¬ÒªÊìÁ·ÕÆÎÕ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖª£ºCA=CB£¬AG=CG£¬AE=BE£¬¡ÏADB=¡ÏCAB£®ÇóÖ¤£ºAF=DF£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®¼ÆË㣺
£¨1£©$\sqrt{18}$¡Á$\sqrt{30}$
£¨2£©$\sqrt{3}$¡Á$\sqrt{\frac{2}{75}}$
£¨3£©$\frac{\sqrt{40}}{\sqrt{98}}$
£¨4£©$\frac{\sqrt{20}-1}{\sqrt{5}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÔĶÁÏÂÁвÄÁÏ£ºÐ¡»ªÓöµ½ÕâÑùÒ»¸öÎÊÌ⣺ÒÑÖª£ºÈçͼ1£¬ÔÚ¡÷ABCÖУ¬Èý±ßµÄ³¤·Ö±ðΪAB=$\sqrt{10}$£¬AC=$\sqrt{2}$£¬BC=2£¬Çó¡ÏAµÄÕýÇÐÖµ£®
С»ªÊÇÕâÑù½â¾öÎÊÌâµÄ£ºÈçͼ2Ëùʾ£¬ÏÈÔÚÒ»¸öÕý·½ÐÎÍø¸ñ£¨Ã¿¸öСÕý·½Ðεı߳¤¾ùΪ1£©Öл­³ö¸ñµã¡÷ABC£¨¡÷ABCÈý¸ö¶¥µã¶¼ÔÚСÕý·½ÐεĶ¥µã´¦£©£¬È»ºóÔÚÕâ¸öÕý·½ÐÎÍø¸ñÖÐÔÙ»­Ò»¸öºÍ¡÷ABCÏàËÆµÄ¸ñµã¡÷DEF£¬´Ó¶øÊ¹ÎÊÌâµÃ½â£®

£¨1£©Í¼2ÖÐÓë¡ÏAÏàµÈµÄ½ÇΪ¡ÏD£¬¡ÏAµÄÕýÇÐֵΪ$\frac{1}{2}$£»
£¨2£©²Î¿¼Ð¡»ª½â¾öÎÊÌâµÄ·½·¨£¬ÀûÓÃͼ4ÖеÄÕý·½ÐÎÍø¸ñ£¨Ã¿¸öСÕý·½Ðεı߳¤¾ùΪ1£©
½â¾öÎÊÌ⣺Èçͼ3£¬ÔÚ¡÷GHKÖУ¬HK=2£¬HG=$2\sqrt{10}$£¬KG=$2\sqrt{5}$£¬ÑÓ³¤HK£¬Çó¡Ï¦Á+¡Ï¦ÂµÄ¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Àà±Èת»¯¡¢´ÓÌØÊâµ½Ò»°ãµÈÊýѧ˼Ïë·½·¨£¬ÔÚÊýѧѧϰºÍÑо¿Öо­³£Óõ½£¬ÈçÏÂÊÇÒ»¸ö°¸Àý£¬Çë²¹³äÍêÕû£®
Ô­Ì⣺Èçͼ1£¬ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬µãEÊÇBC±ßµÄÖе㣬µãFÊÇÏß¶ÎAEÉÏÒ»µã£¬BFµÄÑÓ³¤Ïß½»CDÓÚµãG£®Èô$\frac{AF}{EF}$=3£¬Çó$\frac{CD}{CG}$µÄÖµ£®
£¨1£©³¢ÊÔ̽¾¿
ÔÚͼ1ÖУ¬¹ýµãE×÷EH¡ÎAB½»BGÓÚµãH£¬ÔòABºÍEHµÄÊýÁ¿¹ØÏµÊÇAB=3EH£¬CGºÍEHµÄÊýÁ¿¹ØÏµÊÇCG=2EH£¬$\frac{CD}{CG}$µÄÖµÊÇ$\frac{3}{2}$£®
£¨2£©Àà±ÈÑÓÉì
ÔÚÔ­ÌâµÄÌõ¼þÏ£¬Èô$\frac{AF}{EF}$=m£¨m£¾0£©£¬ÊÔÇó$\frac{CD}{CG}$µÄÖµ£¨Óú¬mµÄ´úÊýʽ±íʾ£¬Ð´³ö½â´ð¹ý³Ì£©£®
£¨3£©ÍØÕ¹Ç¨ÒÆ
Èçͼ2£¬ÔÚÌÝÐÎABCDÖУ¬AB¡ÎCD£¬µãEÊÇBC±ßµÄÖе㣬µãFÊÇÏß¶ÎAEÉÏÒ»µã£¬ÈôBFµÄÑÓ³¤Ïß½»CDÓÚµãG£¬ÇÒ $\frac{AF}{EF}$=m£¬$\frac{CD}{AB}$=n£¬Ôò$\frac{CD}{CG}$µÄÖµÊÇ$\frac{mn}{2}$£®£¨Óú¬m¡¢nµÄ´úÊýʽ±íʾ£¬²»ÒªÇóÖ¤Ã÷£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èçͼ£¬µãOÓëÏß¶ÎABÔÚÍ¬Ò»Æ½ÃæÄÚ£¬AO=AB=2£¬ÈƵãO½«Ïß¶ÎABÐýתһÖÜ£¬ÔòÏß¶ÎABɨ¹ýµÄ×îÐ¡Ãæ»ýΪ4¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬Ò»´Îº¯Êýy=-x+3µÄͼÏóÓëx£¬yÖá·Ö±ð½»ÓÚµãA£¬B£¬µãC¡¢µãB¹ØÓÚµãM£¨0£¬2£©¶Ô³Æ£®
£¨1£©ÇóCµã×ø±ê£»
£¨2£©Éè¹ýB¡¢CÁ½µãµÄÔ²µÄÔ²ÐÄΪP
¢ÙÈôPµãºá×ø±êΪ-3£¬Ô²P½»xÖáÓÚµãE¡¢F£¨EÔÚFµÄ×ó²à£©£¬·Ö±ðÇósin¡ÏBECºÍsin¡ÏBFCµÄÖµ£»
¢Ú¶ÔÓÚ³£Êýa£¨a£¾1£©£¬xÖáÉÏÊÇ·ñ´æÔÚµãQ£¬Ê¹µÃsin¡ÏBQC=$\frac{1}{a}$£¿Èô´æÔÚ£¬Çó³öµãQµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏBAC=90¡ã£¬ADÊÇBC±ßÉϵÄÖÐÏߣ¬EÊÇADµÄÖе㣬¹ýµãA×÷BCµÄƽÐÐÏß½»BEµÄÑÓ³¤ÏßÓÚµãF£¬BF½»ACÓÚµãM£¬Á¬½ÓCF£®
£¨1£©ÇóÖ¤£ºËıßÐÎADCFÊÇÁâÐΣ»
£¨2£©Èô¡ÏFCD=120¡ã£¬ÇÒFC=6£¬Çó¡ÏCBFµÄÕýÇÐÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬ÄÏ¿ªÖÐѧ¸ß¶þÄê¼¶µÄѧÉú·Ö±ðÔÚÎåÔÆÉ½Õ¯M£¬NÁ½´¦²Î¼ÓÉç»áʱ¼ä»î¶¯£®ÏÈÒªÔÚµÀ·AB£¬ACÐγɵÄÈñ½Ç¡ÏBACÄÚÉèÒ»¸öÐÝÏ¢ÇøP£¬Ê¹Pµ½Á½ÌõµÀ·µÄ¾àÀëÏàµÈ£¬²¢ÇÒʹµÃPM=PN£¬ÇëÓÃÖ±³ßºÍÔ²¹æ×÷³öPµãµÄλÖ㨲»Ð´×÷·¨£¬Öµ±£Áô×÷ͼºÛ¼££©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸