精英家教网 > 初中数学 > 题目详情

【题目】如图1,在Rt△ABC中,∠C=90°,BC=8厘米,点D在AC上,CD=3厘米.点P、Q分别由A、C两点同时出发,点P沿AC方向向点C匀速移动,速度为每秒k厘米,行完AC全程用时8秒;点Q沿CB方向向点B匀速移动,速度为每秒1厘米.设运动的时间为x秒(0<x<8),△DCQ的面积为y1平方厘米,△PCQ的面积为y2平方厘米.

(1)求y1与x的函数关系,并在图2中画出y1的图象;
(2)如图2,y2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P的速度及AC的长;
(3)在图2中,点G是x轴正半轴上一点0<OG<6,过G作EF垂直于x轴,分别交y1、y2的图象于点E、F.
①说出线段EF的长在图1中所表示的实际意义;
②当0<x<6时,求线段EF长的最大值.

【答案】
(1)解:∵SDCQ= CQCD,CD=3,CQ=x,

∴y1= x(0<x<8).图象如图所示;


(2)解:SPCQ= CQCP,CP=8k﹣xk,CQ=x,

∴y2= ×(8k﹣kx)x=﹣ kx2+4kx.

∵抛物线顶点坐标是(4,12),

∴﹣ k42+4k4=12.

解得k=

则点P的速度每秒 厘米,AC=12厘米;


(3)解:①观察图象,知线段的长EF=y2﹣y1,表示△PCQ与△DCQ的面积差(或△PDQ面积).

②由(2)得y2=﹣ x2+6x.

∴EF=﹣ x2+6x﹣ x=﹣ x2+ x=﹣ (x2﹣6x+9)+ =﹣ (x﹣3)2+

∵二次项系数小于0,

∴在0<x<6范围,

当x=3时,EF= 最大.


【解析】(1)以C为坐标原点,以CA、CB所在直线为坐标轴建立平面直角坐标系,根据Q点的速度可以用时间x表示出CQ的长,可根据三角形的面积计算公式得出y1,x的函数关系式;
(2)首先找出抛物线经过的点的坐标,然后利用待定系数法求得y2的函数式,然后根据其顶点坐标来确定k的取值.已知了P点走完AC用时8s,因此AC=8k,而AP=kx,CQ=x,那么可根据三角形的面积公式列出关于y2,x的函数关系式,进而可根据顶点坐标求出k的值;
(3)由于EF平行与y轴,所以EF=y2-y1,即三角形PCQ和CDQ的面积差即三角形PDQ的面积,然后由EF=y2-y1可得出EF的长度与x的函数关系式,最后,利用配方法可求得EF的最大值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,二次函数y=ax2+bx+3 经过点A(3,0),G(﹣1,0)两点.

(1)求这个二次函数的解析式;
(2)若点M时抛物线在第一象限图象上的一点,求△ABM面积的最大值;
(3)抛物线的对称轴交x轴于点P,过点E(0, )作x轴的平行线,交AB于点F,是否存在着点Q,使得△FEQ∽△BEP?若存在,请直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PEABE,PFACF,MEF中点,则AM的最小值为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】乐乐发现等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形底角的度数为( )

A.50°B.65°C.65°或25°D.50°或40°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,贵阳市某中学数学活动小组在学习了“利用三角函数测高”后.选定测量小河对岸一幢建筑物BC的高度.他们先在斜坡上的D处,测得建筑物顶的仰角为30°.且D离地面的高度DE=5m.坡底EA=10m,然后在A处测得建筑物顶B的仰角是50°,点E,A,C在同一水平线上,求建筑物BC的高.(结果保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工程交由甲、乙两个工程队来完成,已知甲工程队单独完成需要60天,乙工程队单独完成需要40

(1)若甲工程队先做30天后,剩余由乙工程队来完成,还需要用时   

(2)若甲工程队先做20天,乙工程队再参加,两个工程队一起来完成剩余的工程,求共需多少天完成该工程任务?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图甲,ABCD,试问21+3的关系是什么,为什么?

(2)如图乙,ABCD,试问2+41+3+5一样大吗?为什么?

(3)如图丙,ABCD,试问2+4+61+3+5+7哪个大?为什么?

你能将它们推广到一般情况吗?请写出你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在10×10的正方形网格中,每个小正方形的边长为1个单位长度.△ABC的顶点都在正方形网格的格点上,且通过两次平移(沿网格线方向作上下或左右平移)后得到△A'B'C',点C的对应点是直线上的格点C'

(1)画出△A'B'C'

(2)BC上找一点P,使AP平分△ABC的面积;

(3)试在直线l上画出所有的格点Q,使得由点A'B'C'Q四点围成的四边形的面积为9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AD=FDA延长线上一点,GCF上一点,且ACG=AGCGAF=F=20°,则AB=  

查看答案和解析>>

同步练习册答案