【题目】如图1,在△ABC中,AB=AC=4,∠ABC=67.5°,△ABD和△ABC关于AB所在的直线对称,点M为边AC上的一个动点(重合),点M关于AB所在直线的对称点为N,△CMN的面积为S.
(1)求∠CAD的度数;
(2)设CM=x,求S与x的函数表达式,并求x为何值时S的值最大?
(3)S的值最大时,过点C作EC⊥AC交AB的延长线于点E,连接EN(如图2),P为线段EN上一点,Q为平面内一点,当以M,N,P,Q为顶点的四边形是菱形时,请直接写出所有满足条件NP的长.
【答案】(1)∠CAD=90°;(2)S=﹣x2+2x,当x=2时,S有最大值.(3)2或2或.
【解析】分析:(1)由三角形的内角和定理可得∠BAC,再由轴对称的性质求∠CAD;(2)AM=4-x,又△AMN是等腰直角三角形,由三角形的面积公式和二次函数的性质即可求解;(3)用勾股定理求出AE,AO,ON,OE,EN的长,因为点M,N不动,点P,Q是动点,所以需要分三种情况讨论,分别画出每一种情况的图形,根据图形求解.
详解:(1)∵AB=AC,∠ABC=67.5°,
∴∠ACB=∠ABC=67.5°,∴∠CAB=180°﹣67.5°﹣67.5°=45°,
∵△ABD和△ABC关于AB所在的直线对称,
∴∠DAB=∠CAB=45°,
∴∠CAD=45°+45°=90°.
(2)由(1)知:AN⊥AM,
∵点M.N关于AB所在直线对称,∴AM=AN,
∵CM=x,∴AN=AM=4﹣x,
∴S=×CM×AN=x(4﹣x),
∴S=﹣x2+2x,
∴当x=﹣=2时,S有最大值.
(3)∵CE⊥AC,
∴∠ECA=90°,∵∠CAB=45°,
∴∠CEA=∠EAC=45°,∴CE=AC=4,
在Rt△ECA中,AC=EC=4,由勾股定理得:EA=,
∵AM=AN,∠CAB=∠DAB,∴AO⊥MN,MO=NO,
在Rt△MAN中,AM=AN=4﹣2=2,由勾股定理得:MN=,
∴MO=NO=,
由勾股定理得:AO=,
∴EO=4﹣,
在Rt△EON中,EO=,NO=,
由勾股定理得:EN=,
分为三种情况:①当以MN为对角线时,此时P在E上,即NP=NE=;
②以MN为一边时,以N为圆心,以MN为半径画弧交NE于P,
此时NP=MN=;
③以MN为一边时,
过M作MZ⊥NE于Z,则PZ=NZ,
∵AE⊥MN,∴∠EON=∠MZN=90°,
∵∠ENO=∠MNZ,∴△ENO∽△MNZ,
∴,∴,
∴ZN=,∴NP=2ZN=.
即所有满足条件NP的长是或或.
科目:初中数学 来源: 题型:
【题目】“十一”黄金周期间,南阳动物园在7天假期中每天游客的人数变化如下表:(正数表示比前一天多的人数,负数表示比前一天少的人数)
(1)若9月30日的游客人数记为a万人,请用含a的代数式表示10月2日的游客人数;
(2)请判断7天内游客人数最多的是哪天?
(3)若9月30日的游客人数为2万人,门票每人10元,问黄金周期间南阳动物园门票收入是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.
(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?
(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.
(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,P,Q同时出发,问几秒后,△PBQ的面积为1?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元。
(1)求第一批购进书包的单价是多少元?
(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形ABCD沿对角线BD对折,点C落在E处,BE与AD相交于点F.
(1)求证:△BFD是等腰三角形;
(2)若BC=4,CD=2,求∠AFB的余弦值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ACB中,∠C=90°,AC=BC,一直角三角板的直角顶角O在AB边的中点上,这块三角板绕O点旋转,两条直角边始终与AC、BC边分别相交于E、F,连接EF,则在运动过程中,△OEF与△ABC的关系是( )
A. 一定相似 B. 当E是AC中点时相似
C. 不一定相似 D. 无法判断
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学活动课上,老师提出问题:如图,有一张长4dm,宽3dm的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大.
下面是探究过程,请补充完整:
(1)设小正方形的边长为x dm,体积为y dm3,根据长方体的体积公式得到y和x的关系式: ;
(2)确定自变量x的取值范围是 ;
(3)列出y与x的几组对应值.
x/dm | … | … | ||||||||||
y/dm3 | … | 1.3 | 2.2 | 2.7 | m | 3.0 | 2.8 | 2.5 | n | 1.5 | 0.9 | … |
(4)在下面的平面直角坐标系中,描出补全后的表中各对对应值为坐标的点,并画出该函数的图象如下图;
结合画出的函数图象,解决问题:
当小正方形的边长约为 dm时,(保留1位小数),盒子的体积最大,最大值约为 dm3.(保留1位小数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂甲、乙两名工人参加操作技能培训,现分别从他们在培训期间参加的若干次测试成绩中随机抽取5次,记录如下:
甲 | 85 | 88 | 84 | 85 | 83 |
乙 | 83 | 87 | 84 | 86 | 85 |
(1)请你分别计算这两组数据的平均数;
(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,对角线AC平分∠DAB,∠ABD=52°,∠ABC=116°,∠ACB=α°,则∠BDC的度数为( )
A. α B. α C. 90﹣α D. 90﹣α
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com