【题目】“十一”黄金周期间,南阳动物园在7天假期中每天游客的人数变化如下表:(正数表示比前一天多的人数,负数表示比前一天少的人数)
(1)若9月30日的游客人数记为a万人,请用含a的代数式表示10月2日的游客人数;
(2)请判断7天内游客人数最多的是哪天?
(3)若9月30日的游客人数为2万人,门票每人10元,问黄金周期间南阳动物园门票收入是多少元?
【答案】(1)a+2.4(万人);(2)10月3日游客人数最多,理由见解析(3)272(万元)
【解析】
(1)9月30日的游客人数为a万人,10月1日的游客人数是(a+1.6万),10月2日的游客人数是(a+1.6+0.8)万人.
(2)用含a的代数式表示出每天的游客人数,然后比较得到那天的游客人数最多.
(3)每天人数求和,先计算出游客总数,再计算黄金周南阳动物园的门票收入.
(1)由题意得10月2日的旅游人数:
a+1.6+0.8=a+2.4(万人);
(2)10月3日游客人数最多.
理由:七天内游客人数分别是(单位:万人)
10月1日:a+1.6,
10月2日:a+2.4,
10月3日:a+2.8,
10月4日:a+2.4,
10月5日:a+1.6,
10月6日:a+1.8,
10月7日:a+0.6.
因为a+2.8最大,所以10月3日游客人数最多.
(3)七天游客总人数为:
(a+1.6)+(a+2.4)+(a+2.8)+(a+2.4)+(a+1.6)+(a+1.8)+(a+0.6)
=7a+13.2
当a=2时,
原式=27.2(万人).
∴黄金周期间该公园门票收人是27.2×10=272(万元)
科目:初中数学 来源: 题型:
【题目】如图所示,点P的坐标为(1,3),把点P绕坐标原点O逆时针旋转90°后得到点Q.
(1)写出点Q的坐标是________;
(2)若把点Q向右平移个单位长度,向下平移个单位长度后,得到的点落在第四象限,求的取值范围;
(3)在(2)条件下,当取何值,代数式取得最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,,点从点出发沿射线移动,同时,点从点出发沿线段的延长线移动,已知点、的移动速度相同,与直线相交于点.
(1)如图1,当点在线段上时,过点作的平行线交于点,连接、,求证:点是的中点;
(2)如图2,过点作直线的垂线,垂足为,当点、在移动过程中,线段、、有何数量关系?请直接写出你的结论: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,三角形ABC三边的长分别为AB=m2﹣n2,AC=2mn,BC=m2+n2,其中m、n都是正整数.以AB、AC、BC为边分别向外画正方形,面积分别为S1、S2、S3,那么S1、S2、S3之间的数量关系为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )
A. 12 B. 14 C. 16 D. 18
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),AB∥CD,猜想∠BPD与∠B.∠D的关系,说明理由.(提示:三角形的内角和等于180°)
①填空或填写理由
解:猜想∠BPD+∠B+∠D=360°
理由:过点P作EF∥AB,
∴∠B+∠BPE=180°______
∵AB∥CD,EF∥AB,
∴______∥_____,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)
∴∠EPD+______=180°
∴∠B+∠BPE+∠EPD+∠D=360°
∴∠B+∠BPD+∠D=360°
②依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B.∠D的关系,并说明理由.
③观察图(3)和(4),已知AB∥CD,直接写出图中的∠BPD与∠B.∠D的关系,不说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC是腰长为1的等腰直角三形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,则第2018个等腰直角三角形的斜边长是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点A(-2,5),B(-3,3),C(1,2),点P(m,n)是三角形ABC内任意一点,三角形经过平移后得到三角形A1B1C1,点P的对应点为P1(m+6,n-2).
(1)直接写出平移后点A1、B1、C1的坐标分别为 .
(2)画出三角形ABC平移后的三角形A1B1C1..
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,AB=AC=4,∠ABC=67.5°,△ABD和△ABC关于AB所在的直线对称,点M为边AC上的一个动点(重合),点M关于AB所在直线的对称点为N,△CMN的面积为S.
(1)求∠CAD的度数;
(2)设CM=x,求S与x的函数表达式,并求x为何值时S的值最大?
(3)S的值最大时,过点C作EC⊥AC交AB的延长线于点E,连接EN(如图2),P为线段EN上一点,Q为平面内一点,当以M,N,P,Q为顶点的四边形是菱形时,请直接写出所有满足条件NP的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com