精英家教网 > 初中数学 > 题目详情
17.如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有4处.

分析 由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.

解答 解:∵△ABC内角平分线的交点到三角形三边的距离相等,
∴△ABC内角平分线的交点满足条件;
如图:点P是△ABC两条外角平分线的交点,
过点P作PE⊥AB,PD⊥BC,PF⊥AC,
∴PE=PF,PF=PD,
∴PE=PF=PD,
∴点P到△ABC的三边的距离相等,
∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;
综上,到三条公路的距离相等的点有4个,
∴可供选择的地址有4个.
故答案为:4.

点评 此题考查了角平分线的性质.注意掌握角平分线上的点到角两边的距离相等,注意数形结合思想的应用,小心别漏解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.已知:∠AOB,点M、N.求作:
①∠AOB的平分线OC;
②点P,在OC上,且PM=PN.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知:如图,∠EAB=∠DAC,∠B=∠C,AB=AC.求证:EF=DG.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在?ABCD中,在AB=3,BC=5,对角线AC⊥AB.点P从点D出发,沿折线DC-CB以每秒1个单位长度的速度向终点B运动(不与点B、D重合),过点P作PE⊥AB,交射线BA于点E,连结PD、DE.设点P的运动时间为t(秒),△PDE与?ABCD重叠部分图形的面积为S(平方单位).
(1)AD与BC间的距离是$\frac{12}{5}$;
(2)求PE的长(用含t的代数式表示);
(3)求S与t的之间的函数关系式;
(4)直接写出PE将?ABCD的面积分成1:7的两部分时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是(  )
A.
+4.5
B.
-1.5
C.
-0.4
D.
+0.6

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.正方形ABCD的边长为2,点E、F分别是对角线BD上的两点,过点E、F分别作AD、AB的平行线,如图所示,则图中阴影部分的面积之和等于2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,BE与DF有怎样的位置关系?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.已知-1是关于x的一元二次方程x2+x-a=0的一个根,则a的值是(  )
A.3B.2C.-1D.0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.在平面直角坐标系中,已知点A(-3,4),点B(-1,-2),点C(1,2),O是坐标原点.
(1)求△AOB的面积;
(2)求△ABC的面积.

查看答案和解析>>

同步练习册答案