精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线y=ax2+bx+c与x轴的公共点是(﹣4,0),(2,0),则这条抛物线的对称轴是直线

【答案】x=﹣1
【解析】解:∵抛物线与x轴的交点为(﹣4,0),(2,0), ∴两交点关于抛物线的对称轴对称,
则此抛物线的对称轴是直线x= =﹣1,即x=﹣1.
故答案是:x=﹣1.
【考点精析】关于本题考查的抛物线与坐标轴的交点,需要了解一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点重合,若AB=2,BC=3,则△FCB′与△B′DG的面积之比为(

A.9:4
B.3:2
C.4:3
D.16:9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形网格中,△ABC各顶点都在格点上,点A,C的坐标分别为(﹣5,1)、(﹣1,4),结合所给的平面直角坐标系解答下列问题:

(1)①画出△ABC关于y轴对称的△A1B1C1
②画出△ABC关于原点O对称的△A2B2C2
(2)点C1的坐标是;点C2的坐标是
(3)试判断:△A1B1C1与△A2B2C2是否关于x轴对称?(只需写出判断结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程
(1)x2﹣4x+1=0
(2)3(x﹣2)2=x(x﹣2).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=﹣ +bx+c的图象经过A(2,0)、B(0,﹣6)两点.

(1)求这个二次函数的解析式;
(2)设该二次函数的对称轴与x轴交于点C,连接BA,BC,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,ABCD为长方形,其中点A、C坐标分别为(﹣4,2)、(1,﹣4),且ADx轴,交y轴于M点,ABx轴于N.

(1)求B、D两点坐标和长方形ABCD的面积;

(2)一动点PA出发(不与A点重合),以个单位/秒的速度沿ABB点运动,在P点运动过程中,连接MP、OP,请直接写出∠AMP、MPO、PON之间的数量关系;

(3)是否存在某一时刻t,使三角形AMP的面积等于长方形面积的?若存在,求t的值并求此时点P的坐标;若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中ABC的对边分别记为由下列条件不能判定ABC为直角三角形的是( ).

AA+B=C

BA∶∠B∶∠C =123

C

D=346

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【问题提出】 学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
【初步思考】
我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.

【深入探究】
第一种情况:当∠B是直角时,△ABC≌△DEF.
(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据 , 可以知道Rt△ABC≌Rt△DEF. 第二种情况:当∠B是钝角时,△ABC≌△DEF.
(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF. 第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)
(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若 , 则△ABC≌△DEF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(7,0),C(0,4),点D的坐标为(5,0),点PBC边上运动. ODP是腰长为5的等腰三角形时,点P的坐标为______________.

查看答案和解析>>

同步练习册答案