精英家教网 > 初中数学 > 题目详情

【题目】为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届汉字听写大赛,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:

组别

成绩x

频数(人数)

1

25≤x<30

4

2

30≤x<35

8

3

35≤x<40

16

4

40≤x<45

a

5

45≤x<50

10

请结合图表完成下列各题:

(1)求表中a的值;

(2)请把频数分布直方图补充完整;

(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?

(4)第510名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.

【答案】(1)12;(2)补图见解析;(3)0.44;(4)

【解析】

根据利用总数减去其余四组的人数得出a的值;根据统计表将条形统计图补充完整;首先画出树状图,然后得出概率.

解:(1)表中a的值是:a=50﹣6﹣8﹣16﹣10=10;

(2)根据题意画图如下:

(3)用A表示小宇B表示小强,C、D表示其他两名同学,根据题意画树状图如下:

从上图可知共有12种等可能情况,小宇与小强两名男同学分在同一组的情况有4种,则小宇与小强两名男同学分在同一组的概率是

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,某数学兴趣小组要测量一栋五层居民楼CD的高度,该楼底层为车库,高2.5米;上面五层居住,每层高度相等,测角仪支架离地1.5米,在A处测得五楼顶部点D的仰角为60°,在B处测得四楼顶部点E的仰角为30°,AB=14米,求居民楼的高度.(精确到0.1米,参考数据:≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,等边三角形ABC的边长为5,点P在线段AB上,点D在线段BC上,且△PDE是等边三角形.

(1)初步尝试:若点P与点A重合时(如图1),BD+BE=   

(2)类比探究:将点P沿AB方向移动,使AP=1,其余条件不变(如图2),试计算BD+BE的值是多少?

(3)拓展迁移:如图3,在△ABC中,AB=AC,∠BAC=70°,点P在线段AB的延长线上,点D在线段CB的延长线上,在△PDE中,PD=PE,∠DPE=70°,设BP=a,请直接写出线段BD、BE之间的数量关系(用含a的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一带一路的战略构想为国内许多企业的发展带来了新的机遇,某公司生产AB两种机械设备,每台B种设备的成本是A种设备的倍,公司若投入16万元生产A种设备,36万元生产B种设备,则可生产两种设备共10台.请解答下列问题:

(1)AB两种设备每台的成本分别是多少万元?

(2)AB两种设备每台的售价分别是6万元,10万元,该公司生产两种设备各30台,为更好的支持一带一路的战略构想,公司决定优惠卖给一带一路沿线的甲国,A种设备按原来售价8折出售,B种设备在原来售价的基础上优惠10%,若设备全部售出,该公司一共获利多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为了测量某建筑物BC的高度,小明先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了10m到达D处,此时遇到一斜坡,坡度i=1:,沿着斜坡前进10米到达E处测得建筑物顶部的仰角是45°,请求出该建筑物BC的高度为(  )(结果可带根号)

A. 5+5 B. 5+5 C. 5+10 D. 5+10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点B的坐标是(02),动点A从原点O出发,沿着x轴正方向移动,ABP是以AB为斜边的等腰直角三角形(点ABP顺时针方向排列),当点A与原点O重合时,得到等腰直角OBC(此时点P与点C重合).

1BC=______;当OA=2时,点P的坐标是______

2)设动点A的坐标为(t0)(t≥0).

①求证:点A在移动过程中,ABP的顶点P一定在射线OC上;

②用含t的代数式表示点P的坐标为:(____________);

3)过点Py轴的垂线PQQ为垂足,当t=______时,PQBPCB全等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是(  )

A. (2017,0) B. (2017 C. (2018, D. (2018,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC为等边三角形,E为射线BA上一点,D为直线BC上一点,ED.=EC.

1)当点EAB的上,点DCB的延长线上时(如图1),求证:AEACCD
2)当点EBA的延长线上,点DBC上时(如图2),请写出AEACCD之间的数量关系,不需要证明;
3)当点EBA的延长线上,点DBC的延长线上时(如图3),请写出AEACCD的数量关系,不需要证明;

4)在(1)和(2)的条件下,若AE=2CD=6,则AC=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市举行主题为“奔跑吧!2018”的市民健康跑活动.红树林学校的小记者随机采访了40名参赛选手,了解到他们平时每周跑步公里数(单位:km),并根据统计结果绘制出以下频数分布直方图和不完整的表格.

每周跑步公里数/km

频数(人数)

频率

0≤x<10

2

5%

10≤x<20

a

m

20≤x<30

b

40%

30≤x<40

10

25%

40≤x<50

4

n

(1)求a=  ,n=  

(2)本次活动有10000人参加比赛,请根据上述调查结果,估算该活动中每周跑步公里数在10≤x<30 内的人数;

(3)应比赛组委会要求,现从每周跑步公里数在40≤x<50 内的4名参赛选手甲,乙,丙,丁中随机抽取2人作为本次活动的形象宣传员,请用画树状图法或列表法求出恰好抽中乙,丙两人的概率.

查看答案和解析>>

同步练习册答案