精英家教网 > 初中数学 > 题目详情

【题目】正方形ABCD中,AB=2,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是

【答案】
【解析】解:连接DE,交AC于点P,连接BD.

∵点B与点D关于AC对称,

∴DE的长即为PE+PB的最小值,

∵AB=2,E是BC的中点,

∴AE=1,

在Rt△CDE中,

DE= = =

所以答案是:

【考点精析】利用勾股定理的概念和正方形的性质对题目进行判断即可得到答案,需要熟知直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:,善于思考的小明进行了以下探索:

(其中均为整数),则有

.这样小明就找到了一种把部分的式子化为平方式的方法.

请你仿照小明的方法探索并解决下列问题:

均为正整数时,若,用含mn的式子分别表示,得      

2)利用所探索的结论,找一组正整数,填空:    (      )2

3)若,且均为正整数,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,CDABDFGABGEDBC,求证∠1=∠2.以下是推理过程,请你填空:

解:∵CDABFGAB

∴∠CDB=∠FGB90° 垂直定义)

   FG   

   =∠3    

又∵DEBC 已知

∴∠   =∠3 两直线平行,内错角相等

∴∠1=∠2    

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,直线 y=x+2 与两坐标轴分别交于A、B 两点,点 C OB 的中点,D、E 别是直线 AB、y 轴上的动点,则△CDE 周长的最小值是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,点E为AB的中点,F为BC上任意一点,把△BEF沿直线EF翻折,点B的对应点B′落在对角线AC上,则与∠FEB一定相等的角(不含∠FEB)有个.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知双曲线 (x>0)经过矩形OABC的边AB、BC上的点F、E,其中CE= CB,AF= AB,且四边形OEBF的面积为2,则k的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知平行四边形ABCD中,E、F分别BC、AD边上,AE=BF,AE与BF交于G,ED与CF交于H.求证:

(1)GH∥BC;
(2)GH= AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A,E,F,C在一条直线上,若将△DEC的边EC沿AC方向平移,平移过程中始终满足下列条件:AE=CF,DE⊥AC于点E,BF⊥AC于点F,且AB=CD.则当点E,F不重合时,BD与EF的关系是______

查看答案和解析>>

同步练习册答案