精英家教网 > 初中数学 > 题目详情

【题目】小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1 , y1),P2(x2 , y2),可通过构造直角三角形利用图1得到结论:P1P2= 他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:x= ,y=

(1)请你帮小明写出中点坐标公式的证明过程;
(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为
②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标:
(3)如图3,点P(2,n)在函数y= x(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.

【答案】
(1)

证明:∵P1(x1,y1),P2(x2,y2),

∴Q1Q2=OQ2﹣OQ1=x2﹣x1

∴Q1Q=

∴OQ=OQ1+Q1Q=x1+ =

∵PQ为梯形P1Q1Q2P2的中位线,

∴PQ= =

即线段P1P2的中点P(x,y)P的坐标公式为x= ,y=


(2) ;(﹣3,3)或(7,1)或(﹣1,﹣3)
(3)

解:如图,设P关于直线OL的对称点为M,关于x轴的对称点为N,连接PM交直线OL于点R,连接PN交x轴于点S,连接MN交直线OL于点E,交x轴于点F,

又对称性可知EP=EM,FP=FN,

∴PE+PF+EF=ME+EF+NF=MN,

∴此时△PEF的周长即为MN的长,为最小,

设R(x, x),由题意可知OR=OS=2,PR=PS=n,

=2,解得x=﹣ (舍去)或x=

∴R( ),

=n,解得n=1,

∴P(2,1),

∴N(2,﹣1),

设M(x,y),则 = = ,解得x= ,y=

∴M( ),

∴MN= =

即△PEF的周长的最小值为


【解析】(2)①∵M(2,﹣1),N(﹣3,5),
∴MN= =
所以答案是:
②∵A(2,2),B(﹣2,0),C(3,﹣1),
∴当AB为平行四边形的对角线时,其对称中心坐标为(0,1),
设D(x,y),则x+3=0,y+(﹣1)=2,解得x=﹣3,y=3,
∴此时D点坐标为(﹣3,3),
当AC为对角线时,同理可求得D点坐标为(7,1),
当BC为对角线时,同理可求得D点坐标为(﹣1,﹣3),
综上可知D点坐标为(﹣3,3)或(7,1)或(﹣1,﹣3),
所以答案是:(﹣3,3)或(7,1)或(﹣1,﹣3);
【考点精析】根据题目的已知条件,利用勾股定理的概念和轴对称-最短路线问题的相关知识可以得到问题的答案,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;已知起点结点,求最短路径;与确定起点相反,已知终点结点,求最短路径;已知起点和终点,求两结点之间的最短路径;求图中所有最短路径.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一辆轿车从甲城驶往乙城,同时一辆卡车从乙城驶往甲城,两车沿相同路线匀速行驶,轿车到达乙城停留一段时间后,按原路原速返回甲城;卡车到达甲城比轿车返回甲城早0.5小时,轿车比卡车每小时多行驶60千米,两车到达甲城弧均停止行驶,两车之间的路程y(千米)与轿车行驶时间t(小时)的函数图象如图所示,请结合图象提供的信息解答下列问题:
(1)请直接写出甲城和乙城之间的路程,并求出轿车和卡车的速度;
(2)求轿车在乙城停留的时间,并直接写出点D的坐标;
(3)请直接写出轿车从乙城返回甲城过程中离甲城的路程s(千米)与轿车行驶时间t(小时)之间的函数关系式(不要求写出自变量的取值范围).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰直角△ABC中,∠ACB=90°,点D为三角形内一点,且∠ACD=∠DAB=∠DBC.
(1)求∠CDB的度数;
(2)求证:△DCA∽△DAB;
(3)若CD的长为1,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题是真命题的是( )
A.若一组数据是1,2,3,4,5,则它的方差是3
B.若分式方程 有增根,则它的增根是1
C.对角线互相垂直的四边形,顺次连接它的四边中点所得四边形是矩形
D.若一个角的两边分别与另一个角的两边平行,则这两个角相等

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设A= ÷(a﹣ ).
(1)化简A;
(2)当a=3时,记此时A的值为f(3);当a=4时,记此时A的值为f(4);… 解关于x的不等式: ≤f(3)+f(4)+…+f(11),并将解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2016年里约奥运会,中国跳水队赢得8个项目中的7块金牌,优秀成绩的取得离不开艰辛的训练.某跳水运动员在进行跳水训练时,身体(看成一点)在空中的运动路线是如图所示的一条抛物线,已知跳板AB长为2米,跳板距水面CD的高BC为3米,训练时跳水曲线在离起跳点水平距离1米时达到距水面最大高度k米,现以CD为横轴,CB为纵轴建立直角坐标系.
(1)当k=4时,求这条抛物线的解析式;
(2)当k=4时,求运动员落水点与点C的距离;
(3)图中CE= 米,CF= 米,若跳水运动员在区域EF内(含点E,F)入水时才能达到训练要求,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则正比例函数y=(b+c)x与反比例函数y= 在同一坐标系中的大致图象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发,图中l1 , l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:
(1)表示乙离A地的距离与时间关系的图象是(填l1或l2); 甲的速度是km/h,乙的速度是km/h;
(2)甲出发多少小时两人恰好相距5km?

查看答案和解析>>

同步练习册答案