精英家教网 > 初中数学 > 题目详情

【题目】如图,在等腰直角△ABC中,∠ACB=90°,点D为三角形内一点,且∠ACD=∠DAB=∠DBC.
(1)求∠CDB的度数;
(2)求证:△DCA∽△DAB;
(3)若CD的长为1,求AB的长.

【答案】
(1)解:∵△ABC为等腰直角三角形,

∴∠CAB=45°.

又∵∠ACD=∠DAB,

∴∠ACD+∠CAD=∠DAB+∠CAD=∠CAB=45°,

∴∠CDA=135°

同理可得∠ADB=135°

∴∠CDB=360°﹣∠CDA﹣∠ADB=360°﹣135°﹣135°=90°


(2)证明:∵∠CDA=∠ADB,∠ACD=∠DAB,

∴△DCA∽△DAB


(3)解:∵△DCA∽△DAB,

= = =

又∵CD=1,

∴AD= ,DB=2.

又∵∠CDB=90°,

∴BC= = =

在Rt△ABC中,∵AC=BC=

∴AB= =


【解析】(1)只要证明∠CDA=135°,∠ADB=135°即可解决问题.(2)根据两角对应相等两三角形相似即可判定.(3)由△DCA∽△DAB,推出 = = = ,又CD=1,推出AD= ,DB=2.根据BC= ,求出BC,再在Rt△ABC中,求出AB即可解决问题.
【考点精析】根据题目的已知条件,利用等腰直角三角形和相似三角形的判定与性质的相关知识可以得到问题的答案,需要掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形ABC中,BD,CE分别是两腰上的中线.

(1)求证:BD=CE;
(2)设BD与CE相交于点O,点M,N分别为线段BO和CO的中点,当△ABC的重心到顶点A的距离与底边长相等时,判断四边形DEMN的形状,无需说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】由于雾霾天气频发,市场上防护口罩出现热销.某药店准备购进一批口罩,已知1个A型口罩和3个B型口罩共需26元;3个A型口罩和2个B型口罩共需29元.
(1)求一个A型口罩和一个B型口罩的售价各是多少元?
(2)药店准备购进这两种型号的口罩共50个,其中A型口罩数量不少于35个,且不多于B型口罩的3倍,有哪几种购买方案,哪种方案最省钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=﹣x2+2x+3与x轴交于点A,B(A在B的左侧),与y轴交于点C.
(1)求直线BC的解析式;
(2)抛物线的对称轴上存在点P,使∠APB=∠ABC,利用图1求点P的坐标;

(3)点Q在y轴右侧的抛物线上,利用图2比较∠OCQ与∠OCA的大小,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在距离铁轨200米的B处,观察由南宁开往百色的“和谐号”动车,当动车车头在A处时,恰好位于B处的北偏东60°方向上;10秒钟后,动车车头到达C处,恰好位于B处的西北方向上,则这时段动车的平均速度是( )米/秒.

A.20( +1)
B.20( ﹣1)
C.200
D.300

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,若 = ,如图1,.

(1)判断△ABC的形状,并证明你的结论;
(2)设AE与DF相交于点M,如图2,AF=2FC=4,求AM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).
(1)当﹣2<x≤3时,求y的取值范围;
(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1 , y1),P2(x2 , y2),可通过构造直角三角形利用图1得到结论:P1P2= 他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:x= ,y=

(1)请你帮小明写出中点坐标公式的证明过程;
(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为
②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标:
(3)如图3,点P(2,n)在函数y= x(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣ x+ 分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+ 经过A,B两点.

(1)求A、B两点的坐标;
(2)求抛物线的解析式;
(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC于点D,求△DMH周长的最大值.

查看答案和解析>>

同步练习册答案