精英家教网 > 初中数学 > 题目详情

【题目】阅读材料
如图①,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且点D在AB边上,AB、EF的中点均为O,连结BF、CD、CO,显然点C、F、O在同一条直线上,可以证明△BOF≌△COD,则BF=CD.
解决问题

(1)将图①中的Rt△DEF绕点O旋转得到图②,猜想此时线段BF与CD的数量关系,并证明你的结论;
(2)如图③,若△ABC与△DEF都是等边三角形,AB、EF的中点均为O,上述(1)中的结论仍然成立吗?如果成立,请说明理由;如不成立,请求出BF与CD之间的数量关系;
(3)如图④,若△ABC与△DEF都是等腰三角形,AB、EF的中点均为0,且顶角∠ACB=∠EDF=α,请直接写出 的值(用含α的式子表示出来)

【答案】
(1)

解:猜想:BF=CD.理由如下:

如答图②所示,连接OC、OD.

∵△ABC为等腰直角三角形,点O为斜边AB的中点,

∴OB=OC,∠BOC=90°.

∵△DEF为等腰直角三角形,点O为斜边EF的中点,

∴OF=OD,∠DOF=90°.

∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF,

∴∠BOF=∠COD.

∵在△BOF与△COD中,

∴△BOF≌△COD(SAS),

∴BF=CD


(2)

解:答:(1)中的结论不成立.

如答图③所示,连接OC、OD.

∵△ABC为等边三角形,点O为边AB的中点,

=tan30°= ,∠BOC=90°.

∵△DEF为等边三角形,点O为边EF的中点,

=tan30°= ,∠DOF=90°.

= =

∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF,

∴∠BOF=∠COD.

在△BOF与△COD中,

= = ,∠BOF=∠COD,

∴△BOF∽△COD,

=


(3)

解:如答图④所示,连接OC、OD.

∵△ABC为等腰三角形,点O为底边AB的中点,

=tan ,∠BOC=90°.

∵△DEF为等腰三角形,点O为底边EF的中点,

=tan ,∠DOF=90°.

= =tan

∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF,

∴∠BOF=∠COD.

在△BOF与△COD中,

= =tan ,∠BOF=∠COD,

∴△BOF∽△COD,

=tan


【解析】(1)如答图②所示,连接OC、OD,证明△BOF≌△COD;(2)如答图③所示,连接OC、OD,证明△BOF∽△COD,相似比为 ;(3)如答图④所示,连接OC、OD,证明△BOF∽△COD,相似比为tan

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】设(2y﹣z):(z+2x):y=1:5:2,则(3y﹣z):(2z﹣x):(x+3y)=(  )
A.1:5:7
B.3:5:7
C.3:5:8
D.2:5:8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】通过对苏科版八(下)教材一道习题的探索研究,我们知道:一次函数y=x﹣1的图象可以由正比例函数y=x的图象向右平移1个单位长度得到类似的,函数 的图象是由反比例函数 的图象向左平移2个单位长度得到.灵活运用这一知识解决问题.如图,已知反比例函数 的图象C与正比例函数y=ax(a≠0)的图象l相交于点A(2,2)和点B.

(1)写出点B的坐标,并求a的值;
(2)将函数 的图象和直线AB同时向右平移n(n>0)个单位长度,得到的图象分别记为C′和l′,已知图象C′经过点M(2,4).
①求n的值;
②分别写出平移后的两个图象C′和l′对应的函数关系式;
③直接写出不等式 的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于E.设BP=x,CE=y.

(1)求y与x的函数关系式;
(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;
(3)如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一张长9cm,宽3cm的矩形纸片,如图所示,把它折叠使D点与B点重合,你能求出EF的长吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(阅读材料)

,即2<3,

∴1<<2.

﹣1的整数部分为1.

﹣1的小数部分为﹣2

(解决问题)9的小数部分是   

我们还可以用以下方法求一个无理数的近似值.

阅读理解:求的近似值.

解:设=10+x,其中0<x<1,则107=(10+x)2,即107=100+20x+x2

因为0<x<1,所以0<x21,所以107≈100+20x,解之得x0.35,即的近似值为10.35.

理解应用:利用上面的方法求的近似值(结果精确到0.01).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:

每月用气量

单价(元/m3

不超出75m3的部分

2.5

超出75m3不超出125m3的部分

a

超出125m3的部分

a+0.25


(1)若甲用户3月份的用气量为60m3 , 则应缴费元;
(2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),y与x之间的关系如图所示,求a的值及y与x之间的函数关系式;
(3)在(2)的条件下,若乙用户2、3月份共用气175m3(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC=°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是平行四边形,∠BAD的平分线交BD于点E , 交CD于点F , 交BC的延长线于点G , 则下列结论中正确的是(  )
A.AE2=EFFG
B.AE2=EFEG
C.AE2=EGFG
D.AE2=EFAG

查看答案和解析>>

同步练习册答案