【题目】如图,Rt△ABC纸片中,∠C=90°,AC=3,BC=4,点D在边BC上,以AD为折痕将△ABD折叠得到△AB’D,AB'与边BC交于点E.若△DEB’为直角三角形,则BD的长是________.
【答案】1或
【解析】
由勾股定理可求出AB,若△DEB′为直角三角形,则有(1)∠EDB′=90°,(2)∠DEB′=90°两种情况,因此分别画出图形,在第(1)种情况中,由折叠和三角形的内角和可证△ACE∽△BCA,求出CE、AE的长,进而求出DE、EB′,在Rt△DEB′中,设未知数,列方程求解即可,在第(2)种情况中,点E与点C重合,求出EB′,在Rt△DEB′中,由勾股定理列方程求解即可.
解:在Rt△ACB中,
∵ ∠C=90°,AC=3,BC=4,
∴AB=5,
又∵ 以AD为折痕将△ABD折叠得到△ABD,
∴BD=BD,AB=AB=5,
∵△DEB为直角三角形,
∴①如图1所示:当∠BDE=90°时,过B作BF⊥AC交AC延长线于F,
设BD=BD=x,
∴AF=AC+CF=3+x,BF=CD=CB-BD=4-x,
在Rt△AFB中,
∴AF2+BF2=AB2 ,
即(3+x)2+(4-x)2=52 ,
解得:x=1或x=0(舍去),
∴BD=BD=1,
②如图2所示:当∠BED=90°时,此时点C与点E重合,
∵AB=5,AC=3,
∴BE=AB-AC=5-3=2,
设BD=BD=y,
∴CD=BC-BD=4-y,
在Rt△BDE中,
∴BE2+DE2=DB2 ,
即(4-y)2+22=y2 ,
解得:y= ,
∴BD=BD= ,
综上所述:BD的长为1或.
故答案为:1或.
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD和正方形EFGH的中心重合,,,分别延长FE,GF,HG和EH交AB,BC,CD,AD于点I,J,K,若,则AI的长为______,四边形AIEL的面积为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C
(1)求点A,B,C的坐标;
(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;
(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )
A. B. 2- C. 2- D. 4-
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.
(1)求证:△ACD≌△AED;
(2)若∠B=30°,CD=2,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们定义:如图1,在中,把AB绕点A顺时针旋转得到,把AC绕点A逆时针旋转得到,连接当时,我们称是的“旋补三角形”, 边上的中线AD叫做的“旋补中线”,点A叫做“旋补中心”.
特例感知:
在图2,图3中,是的“旋补三角形”,AD是的“旋补中线”.
如图2,当为等边三角形时,AD与BC的数量关系为______BC;
如图3,当,时,则AD长为______.
猜想论证:
在图1中,当为任意三角形时,猜想AD与BC的数量关系,并给予证明.
拓展应用
如图4,在四边形ABCD,,,,,在四边形内部是否存在点P,使是的“旋补三角形”?若存在,给予证明,并求的“旋补中线”长;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是反比例函数y=的图象的一个分支,对于给出的下列说法:
①常数k的取值范围k>2;②另一分支在第三象限;③在函数图象上取点A(a1,b1)和点B(a2,b2),当a1>a2时,则b1<b2;④在函数图象的某一分支上取点A(a1,b1)和点B(a2,b2),当a1>a2时,则b1<b2.其中正确的是__________.(在横线上填上正确的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E是矩形ABCD的边AD上一点,且BE=ED,P是对角线BD上任一点,PF⊥BE,PG⊥AD,垂足分别为F,G,求证:PF+PG=AB.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com