精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD中,EAB边上任意一点,∠ECF=45°,CFAD于点F,将△CBE绕点C顺时针旋转到△CDP,点P恰好在AD的延长线上.

(1)求证:EF=PF;

(2)直线EF与以C为圆心,CD为半径的圆相切吗?为什么?

【答案】(1)见解析;(2)相切.理由见解析.

【解析】

(1)根据已知判定ECF≌△PCF,从而得到EF=PF;

(2)过点CCQEF于点Q,由(1)得,ECF≌△PCFCQEF,CDFP,根据切线的判定定理从而得到直线EF与以C为圆心,CD为半径的圆相切.

(1)在正方形ABCD中,∠BCD=90°,

依题意CDPCBE绕点C旋转90°得到,

∴∠ECP=90°,CE=CP,

∵∠ECF=45°,

∴∠FCP=ECP﹣ECF=90°﹣45°=45°,

∴∠ECF=FCP,CF=CF,

∴△ECF≌△PCF,

EF=PF;

(2)相切.理由如下:

过点CCQEF于点Q,

由(1)得,ECF≌△PCF,

∴∠EFC=PFC,

CQEF,CDFP,

CQ=CD,

∴直线EF与以C为圆心,CD为半径的圆相切.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在某段限速公路BC上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60 km/h,并在离该公路100 m处设置了一个监测点A.在如图的平面直角坐标系中,点A位于y轴上,测速路段BC在x轴上,点B在点A的北偏西60°方向上,点C在点A的北偏东45°方向上.另外一条公路在y轴上,AO为其中的一段.

(1)求点B和点C的坐标;

(2)一辆汽车从点B匀速行驶到点C所用的时间是15 s,通过计算,判断该汽车在这段限速路上是否超速.(参考数据: ≈1.7)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了解学生上学的交通方式,现从全校学生中随机抽取了部分学生进行我上学的交通方式问卷调查,规定每人必须并且只能在乘车步行骑车其他四项中选择一项,并根据统计结果绘制成如下两幅不完整的统计图.

请解答下列问题:

1)在这次调查中,样本容量为 

2)补全条形统计图;

3乘车所对应的扇形圆心角为 °

4)若该学校共有2000名学生,试估计该学校学生中选择步行方式的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知方程的两个根是,那么,反过来,如果,那么以为两根的一元二次方程是.请根据以上结论,解决下列问题:

(1)已知关于x的方程+mx+n=0(n≠0),求出个一元二次方程,使它的两根分别是已知方程两根的倒数.

(2)已知a、b满足-15a-5=0,-15b-5=0,求的值.

(3)已知a、b、c均为实数,且a+b+c=0,abc=16,求正数C的最小值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)解方程:

(2)计算:3a(2a2-9a+3)-4a(2a-1)

(3)计算:()×()+|-1|+(5-2π)0

(4)先化简,再求值:(xy2+x2y),其中x=,y=.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊙O的直径,点C是弧BD的中点,CE⊥AB于点F.

(1)求证:BF=CF;

(2)若CD=3cm,AC=4cm,求⊙O的半径及CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆,AB=AC=10,BC=12,P是上的一个动点,过点P作BC的平行线交AB的延长线于点D.

(1)当点P在什么位置时,DP是⊙O的切线?请说明理由;

(2)当DP为⊙O的切线时,求线段DP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】3分)在同一平面直角坐标系中,函数y=ax2+bxy=bx+a的图象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C

(1)求抛物线的解析式;

(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;

(3)如图②,若点E为第二象限抛物线上一动点,连接BECE,求四边形BOCE面积的最大值,并求此时E点的坐标.

查看答案和解析>>

同步练习册答案