精英家教网 > 初中数学 > 题目详情

【题目】如图1,等边ABC的边长为3,分别以顶点BAC为圆心,BA长为半径作,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形,设点l为对称轴的交点.

(1)如图2,将这个图形的顶点A与线段MN作无滑动的滚动,当它滚动一周后点A与端点N重合,则线段MN的长为

(2)如图3,将这个图形的顶点A与等边DEF的顶点D重合,且ABDEDE=2π,将它沿等边DEF的边作无滑动的滚动当它第一次回到起始位置时,求这个图形在运动过程中所扫过的区域的面积;

(3)如图4,将这个图形的顶点BO的圆心O重合,O的半径为3,将它沿O的圆周作无滑动的滚动,当它第n次回到起始位置时,点I所经过的路径长为 (请用含n的式子表示)

【答案】(1)3π;(2)27π;(3)2nπ.

【解析】试题分析:(1)先求出的弧长,继而得出莱洛三角形的周长为3π,即可得出结论;

2)先判断出莱洛三角形等边△DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可;

3)先判断出莱洛三角形的一个顶点和O重合旋转一周点I的路径,再用圆的周长公式即可得出.

试题解析:解:(1)∵等边△ABC的边长为3,∴∠ABC=∠ACB=∠BAC=60°,,∴===π,∴线段MN的长为=3π.故答案为:3π;

2)如图1.∵等边△DEF的边长为2π,等边△ABC的边长为3,∴S矩形AGHF=2π×3=6π,由题意知,ABDEAGAF,∴∠BAG=120°,∴S扇形BAG==3π,∴图形在运动过程中所扫过的区域的面积为3S矩形AGHF+S扇形BAG)=36π+3π)=27π;

3)如图2,连接BI并延长交ACD.∵I是△ABC的重心也是内心,∴∠DAI=30°,AD=AC=,∴OI=AI==,∴当它第1次回到起始位置时,点I所经过的路径是以O为圆心,OI为半径的圆周,∴当它第n次回到起始位置时,点I所经过的路径长为n2π=2nπ.故答案为:2nπ.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】按要求画图

1)如图,平面上有五个点ABCDE. 按下列要求画出图形.

①连接BD

②画直线ACBD于点M

③过点A作线段APBD于点P

④请在直线AC上确定一点N,使B,E两点到点N的距离之和最小(保留作图痕迹).

2)小强用5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.注意:只需添加一个符合要求的正方形,并用阴影表示.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形( ).

A. OA=OC,OB=OD B. BAD=BCD,ABCD

C. ADBC,AD=BC D. AB=CD,AO=CO

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形的边长是的平分线交于点,若点分别是上的动点,则的最小值是_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】元旦放假时,小明一家三口一起乘小轿车去探望爷爷、奶奶和姥爷、姥姥.早上从家里出发,向东走了5千米到超市买东西,然后又向东走了2.5千米到爷爷家,下午从爷爷家出发向西走了10千米到姥爷家,晚上返回家里.

1)若以小明家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和姥爷家的位置在下面数轴上分别用点ABC表示出来;

2)超市和姥爷家相距多少千米?

3)若小轿车每千米耗油0.08升,求小明一家从出发到返回家,小轿车的耗油量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为3,菱形EFGH的三个顶点EGH分别在正方形的边ABCDDA上,AH1,联结CF

1)当DG1时,求证:菱形EFGH为正方形;

2)设DGxFCG的面积为y,写出y关于x的函数解析式,并指出x的取值范围;

3)当DG时,求∠GHE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的201712月份的月历表中,任意框出表中竖列上四个相邻的数,这四个数的和可能是:

A.60B.70C.80D.90

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线Ly=ax2+bx+cx轴交于AB30)两点(AB的左侧),与y轴交于点C03),已知对称轴x=1

1)求抛物线L的解析式;

2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;

3)设点P是抛物线L上任一点,点Q在直线lx=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 阅读下列材料:我们知道

现在我们可以用这个结论来化简含有绝对值的代数式,如化简代数式时,令,求得;令,求得(称-12分别为的零点值).在有理数范围内,零点值-12可将全体有理数分成不重复且不遗漏的如下3种情况:

①当时,原式

②当时,原式

③当时,原式.

综上所述,

通过以上阅读,请你解决以下问:

(1)分别求出的零点值;

(2)化简代数式.

查看答案和解析>>

同步练习册答案