精英家教网 > 初中数学 > 题目详情

【题目】某个体小服装店主准备在夏季来临前,购进甲、乙两种T恤.两种T恤的相关信息如表:

品牌

进价(元/件)

45

80

售价(元/件)

75

120

根据上述信息,该店决定用不少于6198元,但不超过6296元的资金购进这两种T恤共100件请解答下列问题:

1)该店有哪几种进货方案?

2)该店按哪种方案进货所获利润最大,最大利润是多少?

【答案】1)有三种进货方案,方案一:购进甲种T49件,乙种T51件;方案二:购进甲种T50件,乙种T50件;方案三:购进甲种T51件,乙种T49件;(2)方案一该店购进甲种T49件,乙种T51件时获利最大,最大利润为3510元.

【解析】

1)设购进甲种Tx件,则购进乙种T恤(100x)件,根据总价=单价×数量结合总价不少于6198元且不超过6296元,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再结合x为整数即可得出各进货方案;

2)设所获得利润为W元,根据总利润=每件的利润×销售数量(购进数量),即可得出W关于x的函数关系式,再利用一次函数的性质即可解决最值问题.

解:(1)设购进甲种Tx件,则购进乙种T恤(100x)件.

依题意,得:

解得:48≤x≤51

x为正整数,

x495051

∴有三种进货方案,方案一:购进甲种T49件,乙种T51件;方案二:购进甲种T50件,乙种T50件;方案三:购进甲种T51件,乙种T49件.

2)设所获得利润为W元.

依题意,得:W=(7545x+12080)(100x)=﹣10x+4000

k=﹣100

W值随x值的增大而减小,

∴当x49时,W取得最大值,最大值=﹣10×49+40003510

答:方案一该店购进甲种T49件,乙种T51件时获利最大,最大利润为3510元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.

(1)求y关于x的函数关系式;(不需要写定义域)

(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知是线段上的一个动点,作直线,过点轴于点,若,设点在直线上,则为(

A.2B.C.3D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以坐标原点O为圆心,作半径为3的圆,若直线y=xb与⊙O相交,则b的取值范围是____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DABC外接圆上的点,且BD位于AC的两侧,DEAB,垂足为EDE的延长线交此圆于点FBGAD,垂足为GBGDE于点HDCFB的延长线交于点P,且PC=PB

(1)求证:∠BAD=PCB

(2)求证:BGCD

(3)设ABC外接圆的圆心为O,若AB=DHCOD=23°,求∠P的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点E是△ABC的内心,过点E作EF∥AB交AC于点F,则EF的长为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的切线,切点为B,OA交⊙O于点C,且AC=OC.

(1)求弧BC的度数;

(2)设⊙O的半径为5,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形中,,点的中点,点上,且,过点于点的度数为(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的位居民,得到这位居民一周内使用共享单车的次数分别为:

(1)这组数据的中位数是________,众数是________;

(2)计算这位居民一周内使用共享单车的平均次数;

(3)若该小区有名居民,试估计该小区居民一周内使用共享单车的总次数.

查看答案和解析>>

同步练习册答案