【题目】如图,在平面直角坐标系中,已知,,,是线段上的一个动点,作直线,过点作交轴于点,若,设点、在直线上,则为( )
A.2B.C.3D.
【答案】B
【解析】
由点的坐标可知四边形OACB是矩形,由DE⊥AD,AD=DE,可得△ACD≌△DBE,从而得到DB=AC=2,CD=BE=1,求出点D、E的坐标,代入y=kx+b,可求出k的值.
解:连接AC,
∵A(3,0),B(0,2),C(3,2),
∴OACB是矩形,
∴AC=OB=2,OA=BC=3,∠ACD=∠DBE=90°,
又∵DE⊥AD,
∴∠ADE=90°,
∴∠ADC+∠DAC=∠ADC+∠EDB=90°,
∴∠DAC=∠EDB,
∵AD=DE,
∴△ACD≌△DBE(AAS),
∴DB=AC=2,CD=BE=32=1,
∴D(2,2),E(0,1),
将D,E坐标代入y=kx+b得:,
解得:,
故选:B.
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC的边长是2,D,E分别是AB,AC的中点,延长BC至点F,使CF=BC,连接CD,EF
(1)求证:CD=EF;
(2)求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.
(1)求边AB的长;
(2)求反比例函数的解析式和n的值;
(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)abc>0;(3)b2-4ac>0;(4)5a+c=0;(5)若m≠2,则m(am+b)>2(2a+b),其中正确的结论有______(填序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,BE=2DE=2,CD=.
(1)求AB的长;
(2)求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形纸片放入以所在直线为轴,边上一点为坐标原点的直角坐标系中,连接.将纸片沿折叠,使得点落在边上点处,若,,在上存在点,使到、的距离之和最小,则点的坐标为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,弦CF⊥AB于点E,CF=4,过点C作⊙O的切线交AB的延长线于点D,∠D=30°,则OA的长为( )
A. 2 B. 4 C. 4 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某个体小服装店主准备在夏季来临前,购进甲、乙两种T恤.两种T恤的相关信息如表:
品牌 | 甲 | 乙 |
进价(元/件) | 45 | 80 |
售价(元/件) | 75 | 120 |
根据上述信息,该店决定用不少于6198元,但不超过6296元的资金购进这两种T恤共100件请解答下列问题:
(1)该店有哪几种进货方案?
(2)该店按哪种方案进货所获利润最大,最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com