精英家教网 > 初中数学 > 题目详情

【题目】如图,AB为O的直径,弦CFAB于点E,CF=4,过点C作O的切线交AB的延长线于点D,D=30°,则OA的长为(  )

A. 2 B. 4 C. 4 D. 4

【答案】B

【解析】

由∠D=30°,利用切线的性质可得∠COB的度数,利用等边三角形的判定和性质及切线的性质可得∠BCD,易得BC=BD,由垂径定理得CE的长,在直角三角形COE中,利用锐角三角函数易得OC的长,得BD的长.

解:连结CO,BC,

∵CD切⊙OC,

∴∠OCD=90°,

又∵∠D=30°,

∴∠COB=60°,

∴△OBC是等边三角形,即BC=OC=OB,

∴∠BCD=90°﹣∠OCB=30°,

∴BC=DB,

又∵直径AB⊥弦CF,

∴直径AB平分弦CF,即CE=

Rt△OCE中,sin∠COE==

∴OC==4,

∴OA=OC=4.

故选:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】成都市空气质量整治领导小组近期提出保护好环境,拒绝冒黑烟.某公交公司将淘汰某一条线路上冒黑烟较严重的公交车,计划购买型和型两种环保节能的公交车10辆.若购买型公交车1辆,型公交车2辆,共需400万元;若购买型公交车2辆,型公交车1辆,共需350万元.

1)求购买型和型公交车每辆各需多少万元?

2)预计在该线路上型和型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买型和型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数的图象经过点(21)和(0,﹣2).

1)求出该函数图象与x轴的交点坐标;

2)判断点(﹣46)是否在该函数图象上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知是线段上的一个动点,作直线,过点轴于点,若,设点在直线上,则为(

A.2B.C.3D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.

(1)求抛物线的函数表达式.

(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?

(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以坐标原点O为圆心,作半径为3的圆,若直线y=xb与⊙O相交,则b的取值范围是____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DABC外接圆上的点,且BD位于AC的两侧,DEAB,垂足为EDE的延长线交此圆于点FBGAD,垂足为GBGDE于点HDCFB的延长线交于点P,且PC=PB

(1)求证:∠BAD=PCB

(2)求证:BGCD

(3)设ABC外接圆的圆心为O,若AB=DHCOD=23°,求∠P的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的切线,切点为B,OA交⊙O于点C,且AC=OC.

(1)求弧BC的度数;

(2)设⊙O的半径为5,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八年级班同学小明和小亮,升入九年级时学校采用随机的方式编班,已知九年级共分六个班,小明和小亮被分在同一个班的概率是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案