11£®Èçͼ£¬Å×ÎïÏßy=ax2+bx+cÓëyÖá½»ÓÚAµã£¬¹ýµãAµÄÖ±Ïßy=$\frac{1}{2}$x+1ÓëÅ×ÎïÏß½»ÓÚÁíÒ»µãB£¬¹ýµãB×÷BC¡ÍxÖᣬ´¹×ãΪµãC£¨3£¬0£©£¬ÓÖÅ×ÎïÏߵĶԳÆÖáΪx=$\frac{17}{10}$£®
£¨1£©ÇóÅ×ÎïÏߵĺ¯Êý¹ØÏµÊ½£»
£¨2£©¶¯µãPÔÚÏß¶ÎOCÉÏ´ÓÔ­µã³ö·¢ÒÔÿÃëÒ»¸öµ¥Î»µÄËÙ¶ÈÏòCÒÆ¶¯£¬¹ýµãP×÷PN¡ÍxÖᣬ½»Ö±ÏßABÓÚµãM£¬½»Å×ÎïÏßÓÚµãN£®ÉèµãPÒÆ¶¯µÄʱ¼äΪtÃ룬MNµÄ³¤¶ÈΪs¸öµ¥Î»£¬ÇósÓëtµÄº¯Êý¹ØÏµÊ½£¬²¢Ð´³ötµÄȡֵ·¶Î§£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¨²»¿¼ÂǵãO£¬µãCÖØºÏµÄÇé¿ö£©£¬Á¬½áCM£¬BN£¬µ±tΪºÎֵʱ£¬ËıßÐÎBCMNΪƽÐÐËıßÐΣ¿ÎʶÔÓÚËùÇóµÄtÖµ£¬Æ½ÐÐËıßÐÎBCMNÊÇ·ñΪÁâÐΣ¿Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃº¯Êý½âÎöʽ£»
£¨2£©¸ù¾ÝƽÐÐÓÚyÖáµÄÖ±ÏßÉÏÁ½µã¼äµÄ¾àÀëÊǽϴóµÄ×Ý×ø±ê¼õ½ÏСµÄ×Ý×ø±ê£¬¿ÉµÃ´ð°¸£»
£¨3£©¸ù¾ÝƽÐÐËıßÐεĶԱßÏàµÈ£¬¿ÉµÃ¹ØÓÚtµÄ·½³Ì£¬¸ù¾Ý½â·½³Ì£¬¿ÉµÃ´ð°¸£»¸ù¾ÝÁâÐεÄÁÚ±ßÏàµÈ£¬¿ÉµÃ´ð°¸£®

½â´ð £¨1£©ÒÀÌâÒ⣬µÃA£¨0£¬1£©£¬B£¨3£¬$\frac{3}{2}$£©£¬ÓÖÅ×ÎïÏߵĶԳÆÖáΪx=$\frac{17}{10}$£¬Ôò
$\left\{\begin{array}{l}{c=1}\\{9a+3b+c=\frac{3}{2}}\\{-\frac{b}{2a}=\frac{17}{10}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{a=-\frac{5}{4}}\\{b=\frac{17}{4}}\\{c=1}\end{array}\right.$£®
ËùÒÔÅ×ÎïÏߵĺ¯Êý¹ØÏµÊ½Îªy=-$\frac{5}{4}$x2+$\frac{17}{4}$x+1£®
£¨2£©ÓÉÌâÒâÖªOP=t£¬ÔòP£¨t£¬0£©£¬M£¨t£¬$\frac{1}{2}$t+1£©£¬N£¨t£¬-$\frac{5}{4}$t2+$\frac{17}{4}$t+1£©£¬
ËùÒÔs=MN=NP-MP=-$\frac{5}{4}$t2+$\frac{17}{4}$t+1-£¨$\frac{1}{2}$t+1£©=-$\frac{5}{4}$t2+$\frac{15}{4}$t£¬
ÆäÖÐtµÄȡֵ·¶Î§ÊÇ0¡Üt¡Ü3£®
¼´sÓëtµÄº¯Êý¹ØÏµÊ½s=-$\frac{5}{4}$t2+$\frac{15}{4}$t£¨0¡Üt¡Ü3£©£®
£¨3£©ÈôËıßÐÎBCMNΪƽÐÐËıßÐΣ¬ÔòÓÐMN=BC£¬´ËʱÓÐ-$\frac{5}{4}$t2+$\frac{15}{4}$t=$\frac{5}{2}$£¬½âµÃt1=1£¬t2=2£®
ËùÒÔµ±t=1»òt=2ʱ£¬ËıßÐÎBCMNΪƽÐÐËıßÐΣ®
µ±t=1ʱ£¬Æ½ÐÐËıßÐÎBCMNÊÇÁâÐΣ¬µ±t=2ʱ£¬Æ½ÐÐËıßÐÎBCMN²»ÊÇÁâÐΣ¬ÀíÓÉÈçÏ£º
¢Ùµ±t=1ʱ£¬P£¨1£¬0£©£¬M£¨1£¬$\frac{3}{2}$£©£¬N£¨1£¬4£©£¬ËùÒÔMP=$\frac{3}{2}$£¬NP=4£¬ÔòMN=NP-MP=$\frac{5}{2}$£®
ÓÖÔÚRt¡÷MPCÖУ¬MC=$\sqrt{M{P}^{2}+P{C}^{2}}$=$\frac{5}{2}$£¬ËùÒÔMN=MC£¬
´ËʱƽÐÐËıßÐÎBCMNÊÇÁâÐΣ®
¢Úµ±t=2ʱ£¬MP=2£¬NP=$\frac{9}{2}$£¬ÔòMN=NP-MP=$\frac{5}{2}$£®
ÓÖÔÚRt¡÷MPCÖУ¬MC=$\sqrt{M{P}^{2}+P{C}^{2}}$=$\sqrt{5}$£¬ËùÒÔMN¡ÙMC£¬
´ËʱƽÐÐËıßÐÎBCMN²»ÊÇÁâÐΣ®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯Êý×ÛºÏÌ⣬ÀûÓôý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£»ÀûÓÃÆ½ÐÐËıßÐεĶԱßÏàµÈµÃ³ö¹ØÓÚtµÄ·½³ÌÊǽâÌâ¹Ø¼ü£»ÀûÓÃÁâÐεÄÁÚ±ßÏàµÈÊǽâÌâ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èçͼ£¬Ò»¸öÁù±ßÐεÄÿ¸öÄڽǶ¼ÊÇ120¡ã£¬Á¬ÐøËıߵij¤ÒÀ´ÎÊÇ2.7¡¢3¡¢5¡¢2£¬Ôò¸ÃÁù±ßÐεÄÖܳ¤ÊÇ20.7£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èôy=mx+m-1ÊǹØÓÚxµÄÕý±ÈÀýº¯Êý£¬ÇómµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÈçͼÊÇÒ»¸öÌúÖÆÁã¼þµÄÈýÊÓͼ¼°³ß´ç±ê×¢£®
£¨1£©ÇëÃèÊö¸Ã¼¸ºÎÌåµÄÐÎ×´£®
£¨2£©Çó¸Ã¼¸ºÎÌåµÄ±íÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Ò»¼þÉÌÆ·µÄÔ­¼ÛÊÇ100Ôª£¬¾­¹ýÁ½´ÎÌá¼ÛºóµÄ¼Û¸ñΪ123Ôª£¬Èç¹ûÿ´ÎÌá¼ÛµÄ°Ù·ÖÂʶ¼ÊÇx£¬¸ù¾ÝÌâÒ⣬ÏÂÃæÁгöµÄ·½³ÌÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®100£¨1+x£©=123B£®100£¨1-x£©=123C£®100£¨1+x£©2=123D£®100£¨1-x£©2=123

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®n¸öÁ¬ÐøÅ¼Êý°´¹æÂÉÅÅ³É±í£º

¸ù¾Ý¹æÂÉ£¬´Ó2016µ½2018£¬¼ýÍ·µÄ·½ÏòÒÀ´ÎӦΪ£¨¡¡¡¡£©
A£®¡ü¡úB£®¡ú¡üC£®¡ý¡úD£®¡ú¡ý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖªx=1ÊǹØÓÚx²»µÈʽ×é$\left\{\begin{array}{l}x¡Ü2\\ x£¾a\end{array}\right.$µÄÒ»¸ö½â£¬ÄÇôʵÊýaµÄȡֵ·¶Î§ÊÇa£¼1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÔÚÒ»¸ö´ü×ÓÖÐ×°Óзֱð±ê×¢Êý×Ö1£¬2£¬3£¬4£¬5µÄÎå¸öСÇò£¬ÕâЩСÇò³ý±ê×¢µÄÊý×ÖÍâÍêÈ«Ïàͬ£®ÏÖ´ÓÖÐËæ»úÈ¡³ö2¸öСÇò£¬ÔòÈ¡³öµÄСÇò±ê×¢µÄÊý×ÖÖ®²îµÄ¾ø¶ÔֵΪ2»ò4µÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{10}$B£®$\frac{3}{10}$C£®$\frac{2}{5}$D£®$\frac{1}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®¸ø³öµÄÁù¸ö¹ØÏµÊ½£º¢Ùx£¨y+1£©¢Ú$y=\frac{2}{x+2}$¢Û$y=\frac{1}{x^2}$¢Ü$y=-\frac{1}{2x}$¢Ý$y=\frac{x}{2}$¢Þ$y=\frac{2}{3x}$£»ÆäÖÐyÊÇxµÄ·´±ÈÀýº¯ÊýÊÇ£¨¡¡¡¡£©
A£®¢Ù¢Ú¢Û¢Ü¢ÞB£®¢Û¢Ý¢ÞC£®¢Ù¢Ú¢ÜD£®¢Ü¢Þ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸