精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论: ①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+
其中正确的序号是(把你认为正确的都填上).

【答案】①②④
【解析】解:∵四边形ABCD是正方形, ∴AB=AD,
∵△AEF是等边三角形,
∴AE=AF,
在Rt△ABE和Rt△ADF中,

∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF,
∵BC=DC,
∴BC﹣BE=CD﹣DF,
∴CE=CF,
∴①说法正确;
∵CE=CF,
∴△ECF是等腰直角三角形,
∴∠CEF=45°,
∵∠AEF=60°,
∴∠AEB=75°,
∴②说法正确;
如图,连接AC,交EF于G点,
∴AC⊥EF,且AC平分EF,
∵∠CAF≠∠DAF,
∴DF≠FG,
∴BE+DF≠EF,
∴③说法错误;
∵EF=2,
∴CE=CF=
设正方形的边长为a,
在Rt△ADF中,
AD2+DF2=AF2 , 即a2+(a﹣ 2=4,
解得a=
则a2=2+
S正方形ABCD=2+
④说法正确,
所以答案是:①②④.

【考点精析】解答此题的关键在于理解等边三角形的性质的相关知识,掌握等边三角形的三个角都相等并且每个角都是60°,以及对正方形的性质的理解,了解正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.
(1)求证:△ABC∽△CBD;
(2)如果AC=4,BC=3,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.
(1)求证:△DCE∽△BCA;
(2)若AB=3,AC=4.求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点D、E、F分别为△ABC的三边中点,试说明△ABC∽△EFD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某数学兴趣小组的同学利用标杆测量旗杆(AB)的高度:将一根5米高的标杆(EF)竖在某一位置,有一名同学站在一处与标杆、旗杆成一条直线,此时他看到标杆顶端与旗杆顶端重合,另外一名同学测得站立的同学离标杆3米,离旗杆30米.如果站立的同学的眼睛距地面(CD)1.6米,求旗杆的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD,BC于点E,F,垂足为点O.
(1)连接AF,CE,求证:四边形AFCE为菱形;
(2)求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将下列各数填入相应的大括号内:

3.141 592 6,,-6,8,,2-π,0.014 545 454 5,-,0,,0.323 223 222 3.

(1)有理数:{                       };

(2)无理数:{                       };

(3)正无理数:{                      };

(4)整数:{                        }.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c的图象如图所示,顶点为(4,6),则下列说法错误的是(
A.b2>4ac
B.ax2+bx+c≤6
C.若点(2,m)(5,n)在抛物线上,则m>n
D.8a+b=0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知点E,F,G,H是矩形ABCD各边的中点,AB=6,BC=8,动点M从点E出发,沿E→F→G→H→E匀速运动,设点M运动的路程x,点M到矩形的某一个顶点的距离为y,如果表示y关于x函数关系的图象如图2所示,那么这个顶点是矩形的( )

A.点A
B.点B
C.点C
D.点D

查看答案和解析>>

同步练习册答案