【题目】在校园文化艺术节中,九年级(1)班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.
(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,恰好选到男生是 事件(填随机或必然),选到男生的概率是 .
(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图的方法,求刚好是一男生和一女生的概率.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AC=8,BC=6,按下列步骤作图:①以点A为圆心,适当长为半径画弧,分别交AC,AB于点D,E;②分别以D,E为圆心,DE的长为半径画弧,两弧相交于点F;③作射线AF,交BC于点G,则CG=( )
A.3B.6C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A.若点C是线段AB的黄金分割点,AB=2,则AC=
B.平面内,经过矩形对角线交点的直线,一定能平分它的面积
C.两个正六边形一定位似
D.菱形的两条对角线互相垂直且相等
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线经过点和.
(1)求抛物线的表达式和顶点坐标;
(2)将抛物线在A、B之间的部分记为图象M(含A、B两点).将图象M沿轴翻折,得到图象N.如果过点和的直线与图象M、图象N都相交,且只有两个交点,求b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
小辉和小乐一起在学校寄宿三年了,毕业之际,他们想合理分配共同拥有的三件“财产”:一个电子词典、一台迷你唱机、一套珍藏版小说.他们本着“在尊重各自的价值偏好基础上进行等值均分”的原则,设计了分配方案,步骤如下(相应的数额如表二所示):
①每人各自定出每件物品在心中所估计的价值;
②计算每人所有物品估价总值和均分值(均分:按总人数均分各自估价总值);
③每件物品归估价较高者所有;
④计算差额(差额:每人所得物品的估价总值与均分值之差);
⑤小乐拿225元给小辉,仍“剩下”的300元每人均分.
依此方案,两人分配的结果是:小辉拿到了珍藏版小说和375元钱,小乐拿到的电子词典和迷你唱机,但要付出375元钱.
(1)甲、乙、丙三人分配A,B,C三件物品,三人的估价如表三所示,依照上述方案,请直接写出分配结果;
(2)小红和小丽分配D,E两件物品,两人的估价如表四所示(其中0<m-n<15).按照上述方案的前四步操作后,接下来,依据“在尊重各自的价值偏好基础上进行等值均分”的原则,该怎么分配较为合理?请完成表四,并写出分配结果.(说明:本题表格中的数值的单位均为“元”)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c的图像如图所示,则下列结论正确的个数有( )
①c>0;②b2-4ac<0;③ a-b+c>0;④当x>-1时,y随x的增大而减小.
A.4个B.3个C.2个D.1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,矩形DEFG的顶点G、F分别在边AC、BC上,D、E在边AB上.
(1)求证:△ADG∽△FEB;
(2)若AD=2GD,则△ADG面积与△BEF面积的比为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为加强学生身体锻炼,某校开展体育“大课间”活动,学校决定在学生中开设A:篮球,B:立定跳远,C:跳绳,D:跑步,E:排球五种活动项目.为了了解学生对五种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的两个统计图.请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了_______名学生;
(2)请将两个统计图补充完整;
(3)若该校有1200名在校学生,请估计喜欢排球的学生大约有多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com